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AN ITERATIVE PROPER ORTHOGONAL DECOMPOSITION
(I-POD) TECHNIQUE WITH APPLICATION TO THE FILTERING

OF PARTIAL DIFFERENTIAL EQUATIONS

D. YU, † AND S. CHAKRAVORTY ‡

Abstract. In this paper, we consider the filtering of systems governed by partial differential
equations (PDE). We adopt a reduced order model (ROM) based strategy to solve the problem.
We propose an iterative version of the snapshot proper orthogonal decomposition (POD) technique,
termed I-POD, to sequentially construct a single ROM for PDEs that is capable of capturing their
behavior over the entire state space of the system, and not just around the snapshot trajectory.
Further, the technique is entirely data based, and is applicable to forced as well as unforced systems.
The I-POD is compared to two other ROM techniques: the Balanced POD ( BPOD) and the dynamic
mode decomposition (DMD). We apply the ROM generated using the I-POD technique to construct
reduced order Kalman filters to solve the filtering problem. The methodology is tested on several
1-dimensional PDEs of interest including the heat equation, the wave equation and 2-dimensional
pollutant transport equation.

Keywords: Proper Orthogonal Decomposition (POD), Filtering/ Data Assimi-
lation, Partial Differential Equations.

1. Introduction. In this paper, we are interested in the filtering/ data assimi-
lation in systems that are governed by partial differential equations (PDE). We take
a reduced order model (ROM) based approach to the problem. We propose an itera-
tive version of the snapshot proper orthogonal decomposition (POD) technique that
allows us to form an ROM of the PDE of interest in terms of the eigenfunctions of
the PDE operator. The I-POD is compared to two other ROM techniques: the Bal-
anced POD (BPOD) and the dynamic mode decomposition (DMD) technique. We
then apply this ROM, along with the Kalman filtering technique, to form a reduced
order filter for the PDE. The filter is constructed in an offline-online fashion where
the expensive computations for the ROM construction is accomplished offline, while
the online part consists of the reduced order Kalman filter which is much more com-
putational tractable than the full problem. The technique is applied to several one
and two dimensional partial differential equations.

We take a ROM based approach to solving the problem of filtering in PDEs. In
particular, we rely on the so-called proper orthogonal decomposition (POD), more
precisely, the snapshot POD technique, to construct ROMs for the PDE of interest.
The POD technique has been used extensively in the Fluids community to produce
ROMs of fluid physics phenomenon such as turbulence and fluid structure interac-
tion [1–4]. There has also been work recently to produce so-called balanced POD
models to better approximate outputs of interest through an amalgam of the snap-
shot POD and the balanced model reduction paradigm of control theory [5] to produce
computationally efficient balanced POD models of the physical phenomenon of inter-
est [6, 7]. More recently, there has been work on obtaining information regarding the
eigenfunctions of a system based on the snapshot POD, called the dynamic mode
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decomposition (DMD) [8, 9]. However, a couple of issues are central to the construc-
tion of the snapshot POD technique: 1) at what times do we take snapshots of the
process, and 2) the snapshot POD essentially provides a reduced basis approximation
of the localized behavior of a system around the snapshot trajectory, is there a con-
structive way to infer the behavior of a system from the snapshot POD away from
this trajectory? We propose a randomly perturbed iterative version of the snapshot
POD (I-POD) which sequentially allows us to sample the process of interest at vari-
ous different time scales, and with different initial condition. Further, we show that
this process allows us to theoretically reconstruct all the eigenfunctions of the original
system using either data from experiments, or from numerical simulations (similar to
the DMD approach) thereby allowing us to sequentially build a single ROM for the
system, utilizing multiple sample trajectories of the system, and by sampling these
trajectories at different timescales. To the best of our knowledge, our work is the
first that proves that, under certain assumptions, the snapshot POD does extract the
eigenfunctions of the underlying operator (though ample empirical evidence is pro-
vided, this is not proved in the DMD paper [8]). The I-POD approach is sequential
and involves solving a sequence of small eigenvalue problems to get a single ROM
of a large scale system. This is in contrast to techniques such as the balanced POD
and Eigensystem Realization Algorithm (ERA) [10], that may require the solution of
a very large Hankel singular value decomposition problem if the number of inputs/
outputs is large. Hence, the I-POD can be a computationally attractive alternative to
the BPOD in such a scenario. Also, we show in the paper that the I-POD compares
favorably to the BPOD and DMD in accuracy. Further, the sequential extraction
of eigenfunctions from different time scales is in general not possible with the DMD
approach since it does not perform adjoint simulations as done by the I-POD. More-
over, to the best of the knowledge of the authors, except for some recent work in the
Fluid mechanics community [11], the use of POD based ROMs for filtering PDEs is
relatively rare.

The problem of estimating dynamic spatially distributed processes is typically
solved using the Ensemble Kalman Filter (EnKF) and has been used extensively in
the Geophysics literature [12, 13] and more recently, in Dynamic Data Driven Appli-
cation Systems (DDDAS) and traffic flow problems [14–20]. The EnKF is a particle
based Kalman filter that maintains an ensemble of possible realizations of the dynamic
map. The Kalman prediction and measurement update steps are performed using en-
semble operations instead of the traditional matrix operations. A primary issue with
the EnKF is the choice of the ensemble realizations and their number. This is almost
always done in a heuristic fashion. Also, the prediction stage requires expensive for-
ward simulations of the realizations using a solver which can take a significant amount
of time. Thus, real time operation is an issue. In contrast, all the expensive compu-
tations for our ROM based technique, namely POD basis and ROM generation, are
done offline and hence, real time operation is never an issue given the offline computa-
tions. Thus, we may think of our approach as a computationally tractable alternative
to the EnKF algorithm. Historically, there has been a lot of theoretical research in
the Control Systems community on the estimation and control of systems driven by
PDEs [21–30]. In fact, it is well known that for linear PDEs, an infinite dimensional
version of the Kalman filter exists which involves the solution of an operator Ricatti
equation [31]. This can be very computationally intensive and may be unsuitable
for online implementation. In contrast, the major computational complexity of the
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ROM based technique that we propose is offline and the online computations are es-
sentially trivial thereby making the technique very suitable for online implementation.

The paper is organized as follows. In section 2, we introduce the filtering problem.
In section 3, we present the offline I-POD procedure used to construct the ROM for
large scale linear systems. In Section 4, we compare the I-POD technique to the
BPOD and DMD techniques. In section 5, we outline the online portion of the
reduced order Kalman filter constructed for filtering along with error bounds for the
resulting approximations. Further, we apply the offline-online procedure problem to
the solution of 1-dimensional PDE filtering problem for the heat equation, the wave
equation and a 2-dimensional pollutant transport equation. We also compare the
performance of the I-POD based filter with that of the full order Kalman filter.

2. Preliminaries. In this work, we are interested in the filtering of distributed
parameter systems, systems whose evolution is governed by a partial differential equa-
tion (PDE), given sparse measurements of the spatial-temporal field variable. Math-
ematically, we are interested in estimating the state of the field variable X ∈ H, for
some suitable Hilbert space H. The state X is governed by the operator equation

Ẋ = AX +W, (2.1)

where W is a spatially distributed Gaussian white noise process perturbing the motion
of the system [32]. We assume that the boundary conditions for the PDE are known.
We do not have access to measurement of the entire states, instead we only have access
to measurements of the field at some sparse set of spatial locations in the domain of
the process given by

Y (tk, xj) = CX(tk) + V
(j)
k , (2.2)

where X(tk) represents the state at the discrete time instant tk, and Y (tk, xj) rep-
resents a localized measurement of the state variable at the sparse set of locations

given by xj , j = 1, · · ·m, and V
(j)
k is a discrete time white noise process corrupting

the measurements at the spatial location xj . We assume that the differential operator
A is self adjoint with a compact resolvent, and thus, A has a discrete spectrum with
a full set of eigenvectors that forms an orthonormal basis for the Hilbert space H.
Further, we assume that the operator A generates a stable semigroup. In Section IV,
we extend the results to non self-adjoint operators.

Given the above assumptions, we can discretize the PDE above using compu-
tational techniques such as finite elements (FE)/ finite difference (FD) to obtain a
discretized version of the operator equations in Euclidean space �N given by the
following:

xk = Axk−1 + wk,

yk = Cxk + vk, (2.3)

where xk is a discretized version of the state X that resides in the high dimensional
Euclidean space �N , while wk and vk are discretized versions of the white noise pro-
cess corrupting the state and measurement equations respectively. Given that the
operator A is self-adjoint, the discretized operator A is (usually) a symmetric ma-
trix with a full set of eigenvectors and real eigenvalues whose eigenvectors form an
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orthonormal basis of �N and for suitable large N , are arbitrarily good approxima-
tions of the true eigenfunctions of the original operator A. We relax the self-adjoint
assumption later in this section. We shall assume throughout this paper that a fine
enough discretization is given to us and thus, the behavior of the original system, in
terms of the trajectories of the system, is captured sufficiently well by the discretized
version of the system. Thus, in the rest of the paper, we only consider the discretized
version of the problem. Given the above discretization, a näıve approach to the solu-
tion of the filtering problems is to use a standard Kalman filter to solve the problem.
The standard Kalman filter problem is given by the following [33]:

Given that x0, vk, wk are jointly gaussian and mutually independent; x0 is
N(x0, P0), vk is zero mean, covariance Rkδkl; wk is zero mean, covariance Qkδkl.

Kalman Filter:

x̂k+1/k = (A−KkC)x̂k/k−1 +Kkyk, x̂0/−1 = x0

Kk = Σk/k−1C
�(CΣk/k−1C

� +Rk)
−1

Σk+1/k = A[Σk/k−1 − Σk/k−1C
�(CΣk/k−1C

� +Rk)
−1CΣk/k−1]A

� +Qk

x̂k/k = x̂k/k−1 + Σk/k−1C
�(CΣk/k−1C

� +Rk)
−1(yk − Cx̂k/k−1)

Σk/k = Σk/k−1 − Σk/k−1C
�(CΣk/k−1C

� +Rk)
−1CΣk/k − 1 (2.4)

Due to the very high dimensionality of �N , since N can easily run into millions of
degrees of freedom (DOF) for a general finely discretized PDE, the Kalman filtering
equations are computationally intractable for such high DOF systems. For example,
for pollutant transport equation, with N = 2500, Σk is a 2500 ∗ 2500 matrix, and we
need to compute the inverse of this matrix in the full order Kalman filter at every time
step. If we use a ROM, then Σk is only a 30∗30 matrix, thereby reducing the Kalman
filter computations by several orders of magnitude. In general, the computational
complexity of the Kalman filter is O(N3) where N is the order of the system. Thus,
if the order of the ROM Nr << N , the order of the full order system, then the
computational gains are highly significant. Thus, we need to first suitably reduce
the order of the system before we apply Kalman filtering techniques to the above
problem.

3. An Iterative Approach to Proper Orthogonal Decomposition (I-
POD). Consider the following linear system:

xk = Axk−1, given x(0), (3.1)

where xk ∈ �N , N is very large and A is a symmetric matrix. Recall that the above
high dimensional linear system results from the discretization of a self adjoint linear
operator.

A 1. We assume that there is a unique null vector corresponding to A and that
the matrix A is Hurwitz, i.e., the system is stable.

Suppose that we choose some arbitrary initial condition x(0) and take M snap-
shots of the system’s trajectory at the time instants t1 < t2 < · · · < tM , where these
snapshots need not be equi-spaced. Let us denote the data matrix of the stacked
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snapshots by X, i.e.,

X = [x1, x2, · · · , xM ],

where xi = x(ti). Suppose now that the number of snapshots is much smaller than the
dimension of the system, i.e., M << N . Then, using the snapshot POD technique,
we can get the POD basis T of the trajectory encoded in the snapshot ensemble X
as follows:

T = XVpΣ
−1/2
p , (3.2)

where Vp and Σp are the eigenvector-eigenvalue pair corresponding to the correlation
matrix X �X, i.e.,

(X �X)Vp = VpΣp. (3.3)

Note that the M ×M eigenvalue problem to be solved for the POD eigenfunctions is
much easier than the high dimensional N × N eigenvalue problem that needs to be
solved if we were interested in solving for the eigenvalues and eigenvectors of A. Given
the snapshot POD eigenfunctions, we can obtain a reduced order approximation of
the system in Eq. 3.1 as follows:

ψk = (T �AT )ψk−1 ≡ Ãψk−1, (3.4)

where ψ represents the projection of the system state onto the POD eigenfunctions
and Ã represents the reduced order M ×M system matrix.

Consider the reduced order system matrix Ã. We know that Ã is symmetric
and thus, has a full eigenvalue decomposition. Let (Λ, P ) represent the eigenvalue-
eigenvector pair for Ã, i.e.,

ÃP = PΛ. (3.5)

Noting that Ã = PΛP �, the ROM matrix Ã transformed to the orthonormal co-
ordinates specified by P , can be represented in the modal co-ordinates φ as:

φk = Λφk−1. (3.6)

Thus it follows that

Λ = (P �T �)A(TP ), (3.7)

where T is the POD eigenfunction matrix and P is the ROM eigenfunction matrix.
Note that T is N ×M and that P is M ×M , and hence, TP is N ×M . The above
equation looks like an eigendecomposition of the matrix A except that M << N and
thus, this is not necessary. Note that the transformation TP denotes the transfor-
mation from the original state space to the POD eigenfunction space to the ROM
eigenfunction space. In the following, we relate the eigenvalues and eigenvectors of A
to the diagonal form Λ and the transformation TP .

A 2. Assume that “p” eigenvectors of the matrix A are active in the snapshot
ensemble X, i.e.,

xi =
p�

j=1

αi
jvj , i = 1, 2, ......M,
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where p ≤ M and without loss of generality, it is assumed that the active eigenvectors
consist of the first “p” eigenvectors. This assumption essentially implies that the
number of modes active within the snapshots is less than the number of snapshots in
the ensemble.

Under assumption A1 and A2, the following result is true.
Proposition 3.1. The columns of the transformation TP are the eigenvectors

of A with corresponding eigenvalues encoded in the diagonal matrix Λ, i.e.,

A(TP ) = (TP )Λ. (3.8)

Proof. Recall that T = XVpΣ
−1/2
p . We have

X = V α = [v1, v2, · · · vp]




α1
1 .. αM

1

. .. .
α1
p .. αM

p



 ,

where note that V is an N × p and α is an p × M matrix. First, consider the case
when p = M . Then, it follows that

Ã = T �AT = Σ−1/2
p V �

pX
�AXVpΣ

−1/2
p = (Σ−1/2

p V �
pα

�)
� �� �

M*M

(V �AV )� �� �
M*M

(αVpΣ
−1/2
p )

� �� �
M*M

.

Comparing this to the fact that Ã = PΛP �, it follows that

P = Σ−1/2
p V �

pα
�
≡ P̃ , (3.9)

if P̃ P̃ � = I. To show this, note that

P̃ P̃ � = Σ−1/2
p V �

p(α
�α)VpΣ

−1/2
p . (3.10)

Further, α�α = X �X = VpΣpV �
p , and hence, noting the orthogonality of the columns

of Vp, it follows that:

P̃ P̃ � = Σ−1/2
p V �

pVpΣpV
�
pVpΣ

−1/2
P = I. (3.11)

Further, it follows that

TP = (XVpΣ
−1/2
p )(Σ−1/2

p V �
pα

�) = V (αVpΣ
−1/2
p )(Σ−1/2

p V �
pα

�) = V P̃ �P̃ = V,(3.12)

i.e., the columns of TP are indeed eigenvectors of A. Moreover, it also follows that
owing to the uniqueness of the similarity transformation of Ã that the eigenvalues
corresponding to the eigenvectors in TP are in the diagonal form Λ. Hence, this
proves our assertion for the case when p = M .
When p < M , the rank of the snapshot ensemble X is p < M and hence, the rank
of X �X is p < M . Thus, it follows that the POD eigenvalues will be non-zero for
only p POD eigenfunctions. Therefore, the transformation into the POD basis T =

XVpΣ
−1/2
p should only include the POD eigenvectors corresponding to the non-zero

eigenvalues. This implies that X �X = α�α = ṼpΣ̃pṼ �
p , where Σ̃p contains the non-

zero POD eigenvalues, and Ṽp contains the corresponding eigenvectors. Further, T =

XṼpΣ̃
−1/2
p , and hence, P̃ , as defined in Eq. 3.9, is now p×p. Thus, the analysis above
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goes through unchanged, and hence, P̃ P̃ � = I, and TP = V , where V now consists of
the p active eigenvectors.

At this point, we make the following remark.
Remark 1. Suppose that p > M , i.e., the number of active eigenvectors are

more than the number of snapshots. WLOG, let p = N . Then

Ã = T �AT = Σ−1/2
p V �

pX
�AXVpΣ

−1/2
p = (Σ−1/2

p V �
pα

�)V �AV (αVpΣ
−1/2
p )

= (Σ−1/2
p V �

pα
�)

� �� �
M*N

Λ����
N*N

(αVpΣ
−1/2
p )

� �� �
N*M

= β�
����
M*M

Γ����
M*M

β����
M*M

,

where (β,Γ) represents the eigenvalue decomposition of the ROM matrix Ã. Note
that now owing to the fact that N > M , we can no longer use the uniqueness of the
similarity transformation of Ã to conclude that the transformation Tβ contains the
eigenvectors of A.

The above proposition and the remark above suggest a technique through which
eigenvectors of the system matrix A can be extracted up to any time-scale. First, we
make the following assumption.

A 3. We assume that there are K characteristic timescales embedded in the
matrix A, namely T1, · · ·TK . Let the eigenvalues corresponding to timescale Tj be

{λ(j)
1 , · · ·λ(j)

Mj
} and let the corresponding eigenvectors be [v(j)1 , · · · v(j)Mj

] ≡ V (j), here,
Mj is the number of active eigenvectors in the jth timescale. Further, we assume that

the timescales are well-separated, i.e., if for some tk, (λ
(j)
k )

tk
�= 0, then (λ(i)

k )
tk

≈ 0 for
all i < j. The above assumption essentially implies all the eigenvectors corresponding
to timescales below a given timescale decay well before the eigenvectors at the given
timescale decay.

At this point, we also need to make sure that all possible eigenfunctions corre-
sponding to any timescale are excited. Under the assumption A1 and A2, the following
result assures us of this:

Proposition 3.2. Let the initial condition x(j)(0) to the linear system in Eq. 3.1
be chosen according to a Gaussian distribution N(0,σ2I). Then, every eigenvector of
A is excited almost surely in at least one of the trajectories X(j).

Proof. Due to the eigenvalue decomposition of A, we may write:

xk =
N�

i=1

(λi)
k(x(0), vi)vi,

where (., .) denotes the inner product in �N . The above implies that (xk, vi) =
λk
i (x(0), vi), and hence

E|(xk, vi)|
2 = (λi)

2kE|(x(0), vi)|
2 = (λi)

2kv�iP0vi = σ2(λi)
2k, (3.13)

here, P0 = E[x(0)x(0)T ] = σ2I. Thus, the ith component of the system trajectory,
i.e., the contribution of the ith eigenvector, is a Gaussian random variable with zero-
mean and a variance that geometrically decays in time as shown above. Thus, the ith

mode is bound to be active for at least one among the ensemble of trajectories. In
fact, owing to the Gaussian nature of the component, it is true that its absolute value
will be above any given threshold, at any given time, with a finite probability.

Given the results above and assumption A3, we are in a position to outline a
procedure that allows us to isolate all eigenfunctions at any given timescale.
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Suppose without loss of generality that T1 > T2 · · · > TK . Suppose now that we
are interested in isolating all the eigenfunctions corresponding to the timescale T1.

We choose an initial time t(1)0 and subsequent snapshot times t(1)n , n = 1 : M , such

that M > M1 and such that the initial time t(1)0 >> T2. Thus, the snapshot timing
assures us that all the eigenvectors at the timescales below T1 will have decayed by
the snapshot times of interest, and thus, the only participating modes are the eigen-
functions corresponding to timescale T1. Then, using Propositions 1 and 2, we know
that we can isolate all the eigenfunctions at the timescale T1 given enough snapshot

ensembles. In particular, suppose that X(1)
j is the jth snapshot ensemble at timescale

T1. Due to proposition 2, as j → ∞, we know that every eigenfunction in set V (1) is
bound to be excited. Further, due to the fact that M > M1, it follows using Propo-
sition 1 that the eigenfunctions of the ROM are the same as the eigenfunctions of
A. Thus, every snapshot ensemble gives us some of the eigenvectors v ∈ V (1) and as
j → ∞, we are assured that all possible v ∈ V (1) are recovered.

Given that we have recovered all the eigenfunctions V (1) corresponding to the
longest timescale T1, we can now iteratively recover all the eigenfunctions at all the
subsequent timescales as follows. Given V (1), we randomly choose an initial condition

x(0) and form the snapshot ensemble X at snapshot times t(2)0 , · · · t(2)M , such that

number of snapshots M > M2, and the initial time of the snapshot t(2)0 >> T3, i.e.,
such that all eigenfunctions at timescales shorter than T2 are absent in the ensemble.
Given the snapshot ensemble X we subtract the contributions of the eigenfunctions
in V (1), i.e.,

x̃(t(2)j ) = x(t(2)j )−
M1�

k=1

(λ(1)
k )

t(2)j
(x0, v

(1)
k )v(1)k . (3.14)

Consider the modified snapshot ensemble X̃, it follows that X̃, by construction, only
contains eigenfunctions from the set V (2) and thus, following the randomly perturbed
POD procedure outline previously, we can recover all the eigenfunctions in V (2). Given
V (1) and V (2), we can repeat the removal, and randomly perturbed POD procedure,
to recursively obtain all the sets V (n) up to any desired timescale Tn. The above
development can be summarized in the following algorithm:

The development above and the I-POD algorithm can be summarized in the fol-
lowing result.

Proposition 3.3. Under assumptions A1-A3, the I-POD algorithm extracts all
eigenfunctions V (i) corresponding to any given time scale T (i).

Remark 2. In practice, we choose the timescales as following: first, we choose a
large enough time so that most of the system eigenfunctions have decayed, then take
several snapshots and extract the eigenfunctions corresponding to this timescale T1.
After subtracting these eigenfunctions from the trajectory, we can still use the same
timescale T1, i.e, the she snapshots, or guess a start time of T2 (T2 ≤ T1), and then
use the same, or different snapshots, respectively, to extract the next set of eigenfucn-
tions. In practice, we use the same snapshots to extract eigenvectors until we cannot
extract any more in this timescale, before we move to the next timescale.
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Algorithm 1 Algorithm I-POD
1. Given timescales T1, · · ·TK

2. Set i = 1, V (0) = φ (empty set)
3. WHILE i ≤ K

DO
(a) Choose snapshot times t(i)0 , · · · t(i)M , such that t(i)0 >> Ti+1 and M > Mi

(b) Set j = 1

i. Choose x(i)
0,j , the initial condition of the jth snapshot ensemble at

time scale Ti, from N(0,σ2I) and generate the jth snapshot ensem-

ble X(i)
j

ii. Substract all the slower eigenfunctions from the snapshot ensemble
using Eq. 3.14, and the previously extracted eigenfunctions from
the sets V (1), V (2), · · ·V (i−1)

iii. Isolate the eigenfunctions at timescale Ti, V (i), using the snapshot
POD. Set j = j + 1

iv. If all eigenfunctions in V (i) have been obtained, go to step (c), else
go to step (i)

(c) Set i = i+ 1
4. Output the eigenfunctions in sets V (1), · · ·V (K)

Remark 3. The timescales T1, · · ·Tk are dependent on the Physics and can be
inferred from physical insight or simulations. The number of snapshots that are re-
quired to extract the eigenfunctions have to be “large enough”. Of course, it might not
be possible to know a priori when M is large enough. However, some amount of trial
and error can tell us as to what is a suitable number for M . In fact, a good heuristic
measure is to wait long enough before the first snapshot, such that most modes have
decayed and we have lesser number of modes participating than the number of snap-
shots. In fact, this is a heuristic that is often used in the POD literature [8]. This
can easily be construed from the eigenvalue decomposition of the snapshot ensemble
by checking for zero eigenvalues and eigenvectors, i.e., rank deficiency of the snapshot
ensemble.

We also note that though theoretically we can extract eigenfunctions at all time
scales, due to small numerical errors that accumulate, practically, we may only be
able to extract the eigenfunctions corresponding to the first few timescales. In most
applications, these first few timescales are typically enough to form a good ROM (for
instance, please see the examples in Section 4 ).

The I-POD technique is a completely data based technique and does not
need knowledge of the system matrix A. Note that ultimately, the ROM Ã = T �AT ,
contains all the information regarding the eigenfunctions of the operator A under

the assumptions above. Again note that T = XVpΣ
−1/2
p , and thus, it follows that

Ã = T �AXVpΣ
−1/2
p = T �X̃VpΣ

−1/2
p , where X̃ is the one time step advanced version

of the snapshot ensemble X (in the discrete time case), and can be obtained directly
from simulation or experimental data.

It should also be noted that Proposition 1 does not distinguish between
forced systems and unforced systems since Assumption 2 under which the result
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is valid only asks for certain sufficient conditions on the active eigenfunctions of the
system in the snapshot ensemble. Since the forced response of a linear system is also
expressed in terms of the eigenfunctions, the I-POD procedure is valid for forced sys-
tems as well as long as Assumption 2 is valid. Hence, the procedure can be used on
experimental data, where the system response may be forced. Of course, the issue is
that Assumption 2 underlying Proposition 1 may not be satisfied for forced systems.
However, in our experiments we do see that this assumption is indeed satisfied and
that we can actually extract the eigenfunctions of the forced system using the I-POD
procedure (this can also be seen from the results in [8]).

Representative results from our experiments are shown in Figure 3.1. In Figure
3.1(a) and Figure 3.1(b), we compare the actual eigenvalues of a randomly generated
100×100 system with those obtained by the I-POD procedure, for an unforced as well
as a forced (constant forcing) symmetric system. The results show that the I-POD
eigenvalues agree very well with the actual eigenvalues.
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Fig. 3.1. Eigenvalues extraction results using I-POD
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3.1. Extension to Non Self-adjoint Operators. In the following, we show
how the I-POD technique can be extended to non self-adjoint operators. Again, we
restrict our attention to a suitably fine discretization of the underlying infinite di-
mensional systems given by a large scale matrix A. Suppose that X is the snapshot
data from the simulation of the response (forced/ unforced) of the matrix A. Let Vp

and Σp be the eigenvectors and eigenvalues resulting form the eigendecomposition of

the snapshot data X �X, and let T = XVpΣ
−1/2
p be the corresponding POD trans-

formation. The reduced order model is then given by Ã = T �AT . Assuming that
the ROM can be diagonalized, we write the similarity transformation for the ROM,
Ã = PΛP−1. Given that assumption 2 holds (the number of snapshots are greater
than the number of active eigenvectors), we have the following result.

Proposition 3.4. The eigenvalues of the ROM Ã, given by the diagonal matrix
Λ, are also eigenvalues of the full order model A, and the corresponding eigenvectors
are given by the transformation TP .

Proof. Let X = V α, as before, where V denotes the active eigenvectors of A in
the snapshots, and α is the coefficient matrix of the eigenvectors for all the snapshots.
Let the number of active eigenvectors be equal to the number of snapshots. Then

Ã = Σ−1/2
p V �

pα
�V �AV αVpΣ

−1/2
p =

P̃ �(V �V )
� �� �
Σ−1/2

p V �
pα

�V �V Λ̃

P̃� �� �
αVpΣ

−1/2
p = PΛP−1, (3.15)

where Λ̃ are the eigenvalues of A corresponding to the eigenvectors V . Thus, if we
show that P̃ is the inverse of P̃ �(V �V ), then due to the uniqueness of the similarity
transformation of Ã, it follows that P̃ = P−1 and Λ = Λ̃. To show this, note that:

P̃ �(V �V )P̃ = Σ−1/2
p V �

pα
�(V �V )αVpΣ

−1/2
p . (3.16)

Here α�(V �V )α = X �X = VpΣpV �
p , and therefore, using the orthogonality of the

columns of Vp, it follows that

P̃ �(V �V )P̃ = Σ−1/2
p V �

pVpΣpV
�
pVpΣ

−1/2
p = I. (3.17)

Hence, P̃ and P̃ �(V �V ) are inverses of each other. It can also be easily shown that
TP = V . Further, the case when the number of snapshots is greater than the number
of active eigenvectors can be treated identically to the symmetric case considered in
Proposition 1.

In the non-symmetric case, P−1T � does not contain the left eigenvectors of A as
was the case for symmetric systems. In fact, P−1T � is the pseudo-inverse of TP = V ,
i.e., P−1T � = (V �V )−1V �. Thus, even though we know the right eigenvectors through
the POD transformation TP , we do not have knowledge of the left eigenvectors from
POD.

In order to gain knowledge of the left eigenvectors, we need to generate data Y
from the adjoint simulations, i.e., using matrix A�. Using this adjoint simulation data
Y , the left eigenvectors of A, which are the same as the right eigenvectors of A� up to
a multiplicative constant, can be found using the I-POD procedure. In other words,
the POD is used to get the right eigenvectors of A� using adjoint simulation data Y
thereby providing us knowledge of the left eigenvectors of A. Further, random ini-
tial conditions can be used to generate the eigenvalues, as well as the left and right
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eigenvectors, using the simulation data from A and its adjoint A�, in a sequential
fashion. Finally, the left/ right eigenvectors corresponding to the different time scales
may also be extracted sequentially, identical to the symmetric case. Note that in the
non-symmetric case, the left eigenvectors are necessary to extract the eigenfunctions
at the different time scales using the sequential I-POD procedure, since the initial
amplitudes of the different eigenmodes are given by the projection of the initial con-
ditions on the corresponding left eigenmodes (note that the DMD cannot do the same
since it does not utilize the adjoint information).

In Figure 3.1(c) and Figure 3.1(d), we show the comparison of the eigenvalues ob-
tained using I-POD with the true eigenvalues for an unforced non-symmetric system
as well as a forced non-symmetric system. In fact, we can find as many eigenvalues
as we want, here we only show the first several dominant eigenvalues.

4. I-POD using input/ output description. In the following, we show how
to extract the left and right eigenvectors of the system using POD, and the input/
output description of the system, as opposed to the random initial conditions that
have been used so far. We shall also compare and contrast the I-POD with two closely
related approaches, the Balanced POD (BPOD), and the Dynamic Mode Decompo-
sition (DMD) approach.

For simplicity, we shall consider a discrete time system (due to the technical
problems of dealing with impulse responses in continuous time systems), and also, for
ease of comparison to the related BPOD and DMD approaches:

xk = Axk−1 +Buk−1,

yk = Cxk. (4.1)

Let the input influence matrix be denoted by B = [b1, · · · bp] and the output matrix
by C = [c1, · · · cm]�.

In this case, the columns of the input influence matrix, bj , serve as the initial
conditions for the simulation of the system A, leading to the snapshot ensemble Xj

while the transposed rows of the output matrix, c�i, serve as the initial conditions for
the simulations of the adjoint system A�, leading to the adjoint snapshot ensemble
Yi. The first set of simulations in terms of the snapshot ensembles Xj leads to a set
of right eigenvalue-eigenvectors (Λr, Vr), while the adjoint simulations (Yi) lead to a
set of left eigenvalues and eigenvectors denoted by (Λl, Vl). In particular, in order
to obtain the pair (Λr, Vr), we do the snapshot POD procedure, followed by diag-
onalization of the ROM, on every trajectory Xj sequentially. Thus, corresponding
to every snapshot ensemble Xj , we will obtain the corresponding set of eigenvalues/
eigenvectors (Λj

r, V
j
r ). For every subsequent snapshot ensemble Xj , we only add the

eigenvalues/ eigenvectors that are not already extracted from Xk, k = 1, ..., j − 1. A
similar procedure can be used to extract the left eigenvalue/ eigenvector pair (Λl, Vl).
Of these eigenvalue-eigenvectors pairs, we only keep those left/ right eigenvectors that
correspond to the eigenvalues in the intersection of the set of eigenvalues in Λl, and
in Λr. Thus, this allows us to keep the modes of the system that are both observable
and controllable.
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Suppose we discard the POD modes corresponding to the small singular values
of the POD, then, quantitatively, we retain only the most observable and most con-
trollable modes of the system (A,B,C) in Vl and Vr respectively. If we only consider
those eigenvectors that are in the intersection of Λr and Λl as mentioned above, then
we include the modes of the system that are most observable as well as controllable, in
the ROM. However, it is not necessary that this method result in a balanced decom-
position. Thus, we can see that the I-POD can sequentially extract the eigenmodes
present in a single trajectory as well as iteratively extract the eigenmodes from dif-
ferent simulation trajectories.

Another way of extracting the controllable/ observable eigenmodes corresponding
to the input/ output description is to perform an SVD on the cross correlation between
the primal and the adjoint simulations, i.e., an SVD of Y �

i Xj for all i, j. In particular,
we write:

Y �
i Xj = UpΣpV

�
p ,

Ã = (Σ−1/2
p U �

pY
�
i )A(XjVpΣ

−1/2
p ) = PΛijP

−1,

Λij = (P−1Σ−1/2
p U �

pY
�
i )� �� �

Φ�
ij

A (XjVpΣ
−1/2
p P )

� �� �
Ψij

. (4.2)

In the above, it can be shown that Λij contains the most observable and controllable
eigenmodes present in the responses Yi and Xj . However, it is not necessarily true
that Φij and Ψij contain the most observable and controllable left and right eigen-
vectors respectively. However, the left and right eigenvectors corresponding to the
eigenvalues in Λij can be found by doing the eigenvalue decomposition of Y �

i Yi and
X �

jXj respectively. In the experiments that follow, however, we use Φij and Ψij as
the left/ right eigenvectors.

4.1. Comparison with Balanced POD. In the following, we assume that the
system of interest has m outputs and p inputs, and we have N snapshots for each
input/ output trajectory. In this case, the BPOD has to solve the SVD problem of
a matrix of dimension (mN) x (pN). The I-POD on the other hand solves (m + p)
eigenvalue problems of dimension NxN . In case we use cross-correlations, we would
have to solve (mp) SVD problems of dimension NxN . Hence, it can be seen that the
I-POD would be computationally much more efficient than the BPOD if the number
of inputs/ outputs of a system is large. This is because the BPOD requires to solve an
SVD problem for a matrix formed by stacking all input/ output correlation matrices
Y �
i Xj in a large Hankel matrix, whereas the I-POD uses the eigendecomposition of

Y �
i Yi, and X �

jXj ( or Y �
i Xj ) sequentially, and can iteratively build up the ROM due to

the invariance of the underlying eigenmodes to the different trajectories of the system.

In the following, two examples comparing the Balanced POD and I-POD are
shown. In the examples, we define the output error as:

Eoutput = �Ytrue − Yred�, (4.3)

where Ytrue are the outputs of the true system and Yred are the outputs of the reduced
order system.
The state error is defined as:

Estate = �Xtrue −Xred�, (4.4)
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where Xtrue are the states of the true system and Xred are the states of the reduced
order system.

4.1.1. Heat Equation. The heat transfer by conduction along a slab is given
by the partial differential equation:

∂T

∂t
= α

∂2T

∂x2
+ f (4.5)

The length of the slab is 5m and the continuous spatial domain X is divided into
100 grid cells of equal length. The model is simulated for a period of 100 minutes
and the time horizon is discretized into 50000 time steps, α is thermal diffusivity, and
takes the value 0.01. f is the constant source in the middle of the slab, and f takes
the value 50 ◦C/minute.

The boundary condition is: T (0, t) = T (L, t) = 0, ∀t > 0. The initial condition is
200 ◦C along the slab. The temperature of the slab is measured at five equi-spaced
points along its length.
For Balanced POD, 100 snapshots from the first 3000 time steps are collected, the

snapshots are equi-spaced. We use 20 modes to construct the Balanced POD based
ROM. For I-POD, we use the same initial conditions ( input/ output description of
the system ) as Balanced POD. We also collect the snapshots from the first 3000 time
steps, but in 6 timescales. Using the I-POD technique, we can collect more modes se-
quentially, and we use 30 modes to construct the I-POD based ROM. The comparison
between the Balanced POD and I-POD is shown in Figure 4.1. In Figure 4.1(a)-(b),
we compare the eigenvalues extracted by I-POD and Balanced POD (i.e., eigenvalues
of the ROM constructed by BPOD) .

To test the ROM, we use 20 different random initial conditions and take the av-
erage output/state error over these 20 simulation. In Figure 4.1(c), we compare the
output errors of the two algorithm. In Figure 4.1(d), we compare the state errors of
the two algorithm.

4.1.2. Pollutant Transport Equation. The two-dimensional pollutant trans-
port equation describe the contaminant transport is:

∂c(x, y, t)

∂t
= Dx

∂2c(x, t)

∂x2
+Dy

∂2c(x, t)

∂y2
− vx

∂c(x, t)

∂x
− vy

∂c(x, t)

∂y
+ Ss, (4.6)

where c is concentration of the contaminant, D is dispersion and takes value 0.6 here,
v is velocity in the x and y directions and takes value 1, and Ss is source of pollutant.

In simulation, there are three obstacles and three sources in the field. The initial
condition for simulation is zero. We use Neumann boundary conditions. Ten mea-
surements are taken equi-spaced along the diagonal of the field. The actual field at
the end of simulation is shown in Figure 4.2. The field is discretized into a 50∗50 grid.

14



0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Eigenvalues extract by I−POD

 

 

Actual eigenvalues
Eigenvalues extract by I−POD

(a) Comparison of eigenvalues extract by I-POD
and actual eigenvalues

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Eigenvalues extract by BPOD

 

 

Actual eigenvalues

Eigenvalues extract by BPOD

(b) Comparison of eigenvalues extract by BPOD
and actual eigenvalues

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.5

1

1.5

2

2.5

3

time

||
Y

tr
u

e
−

Y
re

d
||

BPOD vs. I−POD output error

 

 

BPOD output error
I−POD output error

(c) Comparison of output errors

0 0.5 1 1.5 2 2.5 3

x 10
4

4

5

6

7

8

9

10

11

12

13

14

time

||
X

tr
u

e
−

X
re

d
||

BPOD vs. I−POD state error

 

 

BPOD state error

I−POD state error

(d) Comparision of state errors

Fig. 4.1. Comparison between BPOD and I-POD for Heat equation
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Fig. 4.2. Actual field at the end of simulation for pollutant transport equation

For Balanced POD, we collect the 100 snapshots from the first 3000 time steps.
The snapshots are equi-spaced, and we can construct the BPOD based ROM using 22
modes. Note that we can solve the singular value decomposition problem using ten
measurements and three inputs for this problem, but we are not able to solve the large
singular value decomposition problems as the measurements increase, for instance, if
we measure the entire field. For I-POD, we use random initial condition, and collect
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the 100 snapshots from the first 3000 time steps. The snapshots are equi-spaced, and
we construct the I-POD based ROM (using Y �X) using 30 modes.
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Fig. 4.3. Comparison between BPOD and I-POD for Pollutant Transport Equation

The comparisons between the Balanced POD and I-POD is shown in Figure 4.3.
In Figure 4.3(a)-(b), we compare the eigenvalues extract by I-POD and Balanced
POD. To test the ROM, we use different random forcing and take the average out-
put/state error over 20 different simulations. In Figure 4.3(c), we compare the aver-
aged output errors of the two algorithm. In Figure 4.3(d), we compare the averaged
state errors of the two algorithm.

From the two examples, we can see that at the beginning of the simulation, the
output error using I-POD is larger than Balanced POD, but the errors decay fast and
I-POD is more accurate then Balanced POD, as time increases. The state error is
lower for the I-POD when compared to the BPOD.

4.2. Comparison with DMD. The I-POD can be construed as a sequence of
DMDs to extract the eigenmodes of a system from a given trajectory targeting the
different timescales. Further, the I-POD can be thought of as a sequence of DMDs
that iteratively extracts the eigenmodes present in different trajectories of a system.
The I-POD also utilizes adjoint simulations to obtain information regarding the left

16



eigenvectors of a system, and hence, can construct a more accurate ROM of the system
in modal space than the DMD. To see this, note that the ROM in modal space is
given by:

ψk = V �
l AVrψk−1 + V �

l Bwk−1,

yk = CVrψk. (4.7)

The I-POD can accurately extract the left eigenvectors Vl from the adjoint simula-
tions while the DMD has to rely on a pseudo-inverse of Vr as an approximation of the
left eigenvectors Vl. Thus, theoretically, the I-POD approximation is guaranteed to
be better than the DMD because it exploits the adjoint information. The DMD also
does not have the time scale targeting property of the I-POD given a single trajectory
of a system. Finally, the I-POD also theoretically shows why a DMD type procedure
is capable of extracting the underlying eigenmodes of the system (under Assumption
A2).
Here, we compare the two algorithms for the heat equation and pollutant transport
equation.

4.2.1. Heat equation. For DMD, we use a random initial condition (if use the
actual initial condition, it will give a worse results), and collect the 100 snapshots
from the first 3000 time steps. The snapshots are equi-spaced, and we construct
DMD based ROM using 16 modes. We construct the I-POD based ROM as men-
tioned before. The comparisons between the DMD and I-POD are shown in Figure
4.4. In Figure 4.4(a)-(b), we compare the eigenvalues extract by I-POD and DMD.
To test the ROM, we use 20 different random initial conditions and take the average
output/state error of these 20 simulation. In Figure 4.4(c), we compare the averaged
output errors of the two algorithm. In Figure 4.4(d), we compare the averaged state
errors of the two algorithm.

4.2.2. Pollutant Transport Equation. For DMD, we use the random initial
condition, and collect the 100 snapshots from the first 3000 time steps. The snapshots
are equi-spaced, and we can construct the DMD based ROM using 30 modes. We
construct the I-POD based ROM as mentioned before. The comparison between the
DMD and I-POD is shown in Figure 4.5. In Figure 4.5(a)-(b), we compare the eigen-
values extract by I-POD and DMD. To test the ROM, we use 20 different random
time forcing and take the average output/state error over 20 simulations. In Figure
4.5(c), we compare the average output errors of the two algorithm. In Figure 4.5(d),
we compare the average state errors of the two algorithms.

From the two examples, we can see that I-POD is significantly better than DMD,
especially for the 2D pollutant transport equation. However, this should not be a
surprise since the I-POD uses different time-scales, as well as the adjoint information
to get a higher fidelity ROM.

5. Application of I-POD to Filtering of Partial Differential Equations.
Consider now the continuous-discrete filtering of the distributed parameter system in
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Fig. 4.4. Comparison between DMD and I-POD for Heat equation

the high dimensional discretized setting:

xk = Axk−1 + wk, (5.1)

yk = Cxk + vk, (5.2)

where recall that yk ∈ �p is the measurement at time tk, wk is white noise process
perturbing the systems while vk is a measurement white noise process corrupting the
measurement at time tk. Here, wk and vk are independent and the initial condition
x(0) is independent of wk and vk too. Typically, the measurements are very sparse,
i.e., p << N , and N is very large. Hence, using standard estimation theoretic tech-
niques such as the Kalman filter for filtering the above system is out of question owing
to the high dimensionality of the resulting problem (the Kalman filter requires O(N3)
operations at every update step. Thus, it is vitally important that suitable ROMs be
devised to alleviate the computational intractability of the problem above. Since we
are considering the discrete setting for filtering, let us assume that the measurements
are taken time T apart.

In order to form a suitable ROM of the above system, suppose we keep only Nr of
the eigenfunctions of A as modes of the ROM. Under assumption A1-A2, the expected
value of the error between the true system and the ROM at any time is given by the
following result.
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Fig. 4.5. Comparison between DMD and I-POD for Pollutant Transport Equation

Proposition 5.1. The expected value of the squared error in keeping only Nr

modes in the ROM is given by

E||ek||
2 =

N�

i=Nr+1

(λi)
2kE|(x(0), ui)|

2 +
N�

i=Nr+1

σ2
i (
(λi)2k − 1

(λi)2 − 1
),

σ2
i = u�

iRWui, (5.3)

where ek = x(tk)−xred(tk), x(tk) is the state of the true system, xred(tk) is the state
of the reduced order system, (., .) denotes the inner product in Rn, ui are the left
eigenvectors, and Rw represents the covariance of the white noise process wk.

Note that the first term in the above expression is due to the initial conditions
while the second term is due to the random perturbation wk.

Proof. The error incurred in keeping only Nr modes in the ROM is given by:

ek =
N�

i=Nr+1

(λi)
k(x(0), ui)vi +

N�

i=Nr+1

∆w
i (tk)vi,
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where

∆w
i (tk) =

tk�

τ=0

(λi)
tk−τ cwi (τ),

cwi (τ) = (wτ , ui).

Here, ui are the left eigenvectors while vi are the right eigenvectors. Then, it follows
that:

E||ek||
2 =

�

i

(λi)
2kE|(x(0), ui)|

2 +
�

i

E|∆w
i (tk)|

2, (5.4)

where for notational ease the subscript i is used to denote the summation from Nr+1
to N . Then,

|∆w
i (tk)|

2 =
tk�

τ=0

tk�

s=0

λ(tk−τ)
i λ(tk−s)

i cwi (τ)c
w
i (s). (5.5)

Noting that

cwi (τ)c
w
i (s) = (wτ , ui)(ws, ui) =

�

j,k

wj(τ)wk(s)uijuik,

where uij denotes the jth component of ui, it follows that

E[cwi (τ)c
w
i (s)] =

�

j,k

uijuikE[wj(τ)wk(s)] = u�
iRwδ[τ − s]ui, (5.6)

where δ[.] denotes the Kronecker delta function. Then, substituting the above equa-
tion back into Eq. 5.5, and using the result in Eq. 5.4, while using the sampling
property of the Kronecker delta function under an integral, the result follows.

Thus, we have:

E||ek||
2
≤

N�

i=Nr+1

(λi)
2kE|(x(0), ui)|

2

� �� �
initial condition error

+
N�

i=Nr+1

σ2
i (
(λi)2k − 1

(λi)2 − 1
)

� �� �
random perturbation error

,

σ2
i = u�

iRwui (5.7)

The above expression gives an estimate of the error made in keeping only Nr modes
in the solution. Note that the measurement equations are immaterial in these error
estimates since they do not alter the system equations in any fashion. In fact, the
above is an a priori estimate that is averaged over all possible future observations.

Given the measurement time interval T , and the probability density function of
the initial state x0, we can neglect those modes such that λ2T

i ≈ 0 and thus, the
perturbation due to the initial condition is negligible. Of course, the error due to the
stochastic perturbations remains, however, theoretically, we can get all λi since that
is assured us by Proposition 3 and I-POD, and hence, we can make an a priori error
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estimate regarding the error made in keeping only Nr modes of the system.

Given that we have sufficient number of modes in our ROM such that the error
in the reduced solution is within some pre-specified bounds, the filtering of the PDE
proceeds as follows. We choose those eigenfunctions that need to be kept, given that
they have already been extracted using the I-POD procedure, and form the ROM
for the filtering problem as follows. Define the transform Vr = [v1, · · · vNr ] consisting
of the retained right eigenmodes and Vl = [u1, · · ·uNr ], the retained left eigenmodes.
The filtering ROM is the following:

ψk = (V �
l AVr)ψk−1 + V �

l Bwk, ψ(0) = (x(0), Vl),

yk = (CVr)ψk + vk, (5.8)

The above system now results in an Nr×Nr filtering problem with Nr << N and
thus, standard estimation theoretic methods such as the Kalman filter can be used to
solve the problem. In the following sections, we show the application of the I-POD
based filtering technique to the 1-D Heat equation, the 1-D wave equation and the
2-D pollutant transport equation.

5.1. Heat Equation. The heat equation is given is Section 4, here, we use the
same initial condition and boundary condition as in Section 4.

First, we compare the right eigenvectors extracted by the I-POD technique with
the full order system in Figure 5.1.
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Fig. 5.1. Comparison of right eigenvectors extracted by I-POD ( on the top ) and full order
system ( on the bottom )

The comparisons between the reduced order filter and real system at four different
time steps are shown in Figure 5.2(a). The red curves are the real heat profiles and
the blue curves are filter results from the reduced model. In Figure 5.2(b)-(d), the
error and the 3σ boundary for the reduced model, at three different chosen location
are shown too.
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Fig. 5.2. Filter results for heat equation

It can be seen that the I-POD ROM based Kalman filter provides a good estimate
of the temperature profile for the problem in that the errors stay within the 3 σ error
bounds (a common engineering measure for verifying the consistency of a filter).

5.2. Wave Equation. The one dimensional wave equation describing a vibrat-
ing string on a finite interval is:

∂2u(x, t)

∂t2
= c2

∂2u(x, t)

∂x2
(5.9)

The string vibration is simulated for a period of 1.5 seconds and the time domain
T is discretized into 200 time steps. The length of the string is 1m and is divided by
M = 100 grid points. The variable c is the wave speed, and takes value 1 here.

The boundary conditions for a fixed end string are:

ux=0 = 0;ux=M = 0. (5.10)

Displacements are measured at five equi-spaced points along the string. A random
initial condition is used for generating the reduced order model, while the initial
condition of the string for simulation is:

u0 = 20sin(2π
x

M
),

∂u0

∂t
=

�
4 x
M if x ≤

M
2

4− 4 x
M if x ≥

M
2 ,

(5.11)

In Figure 5.3(a), we show the comparison between the real wave profiles and the
reduced model filter at three different time steps. The real wave profiles are in red
while the filter results are shown in blue. Also, in Figure 5.3 (b)-(d), the errors and
the 3σ boundary for the reduced model at three different chosen location are shown.

Again, these results show that the ROM based filter is capable of getting a good
estimate of the wave profile based on the noisy measurements.
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Fig. 5.3. Filter results for wave equation
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Fig. 5.4. Comparison of Right eigenfunctions

5.3. Pollutant transport equation. The 2D pollutant transport equation is
given in Section 4, the initial condition and boundary condition are the same as in
Section 4. The first four right eigenfunctions extracted by I-POD technique (on the
top) and the full order system (on the bottom) are compared in Figure 5.4.

Figure 5.5 (a) and (b) compare the filter results with the actual field at the end
of the simulation. Also, in Figure 5.5 (c)-(d), the errors and the 3σ boundary for the
reduced model at two different chosen location are shown.

These results show that for the 2-dimensional pollutant transport case, the ROM
based filter is capable of getting a good estimate of the actual fluid field based on the
noisy measurements.

5.4. Comparison with Full Order Kalman filter. Now, we compare the
accuracy and the computational cost of the I-POD ROM based Kalman filter with
the full order Kalman Filter. For the heat equation, we need 15.62s using ROM fil-
tering, and 18.45s using the full order Kalman filter. The error and 3σ boundary
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Fig. 5.5. Filter results for Pollutant transport equation
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Fig. 5.6. Comparison for ROM Kalman filter and Full order Kalman filter

comparing ROM and full order Kalman fIlter at two different locations are shown in
Figure 5.6 (a) and (b). For wave equation , we need 2s using ROM filtering, and
5.4s using the full order Kalman filter. The error and 3σ boundary comparing ROM
and full order filter at two different locations are shown in Figure 5.6 (c) and (d).
For pollutant transport equation, we need 765.5s using ROM filtering, and we cannot
implement the full order Kalman filter in real time due to the high dimensionality
of the problem. As can be seen from these examples, the error and the confidence
bounds of the estimates are better in the case of the full order Kalman filter, however,
at a much higher computational overhead. It should also be noted that though the
errors and confidence bounds of the ROM filter are higher, the ROM filter is nonethe-
less consistent, i.e., the ROM filter errors remain within the ROM confidence bounds.

6. Conclusion. In this paper, we have introduced a data-based iterative snap-
shot POD (I-POD) approach to form ROMs for large scale linear systems. We have
used the I-POD based ROM to form a reduced order Kalman filter for application
to the filtering of linear partial differential equations. We have compared the perfor-
mance of the ROMs formed by the I-POD to those formed using BPOD and DMD,
and shown that the I-POD compares favorably with these techniques. We have shown
the application of the I-POD ROM based filtering technique to the heat, wave and
pollutant transport equations. As can be seen from the results, the linear ROM based
filtering performed well when compared to the full order Kalman filter, while taking
significantly less time. The most pressing need at this point is to be able to extend
the I-POD technique to nonlinear systems. Further, we will also apply the tech-
nique to more realistic 2 and 3-dimensional partial differential equations that may be
encountered in practice such as fluid flow problems.
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Information Space Receding Horizon Control
Z.Sunberg, S. Chakravorty, R. Scott Erwin

Abstract—In this paper, we present a receding horizon solution

to the optimal sensor scheduling problem. The optimal sensor

scheduling problem can be posed as a Partially Observed Markov

Decision Process (POMDP) whose solution is given by an Infor-

mation Space (I-space) Dynamic Programming (DP) problem. We

present a simulation based stochastic optimization technique that,

combined with a receding horizon approach, obviates the need to

solve the computationally intractable I-space DP problem. The

technique is tested on a sensor scheduling problems in which a

sensor must choose among the measurements of N dynamical

systems in a manner that maximizes information regarding the

aggregate system over an infinite horizon. While simple, such

problems nonetheless lead to very high dimensional dynamic

programming problems to which the receding horizon approach

is well suited.

I. INTRODUCTION

In this paper, we consider the problem of optimal sensor
scheduling such that the information gained by the sensor
is maximized. In particular, this problem is motivated by
the so-called Space Situational Awareness (SSA) problem
where a large number of space-based targets, such as space
debris, satellites and asteroids, have to be monitored using
far fewer sensors, while maximizing the information we have
about these objects [1]. It is easily shown that the scheduling
problem, in general, may be posed as a Partially Observed
Markov Decision Problem (POMDP) whose solution is given
by an information space (I-space) Dynamic Programming
(DP) problem. We propose a receding horizon control (I-space
RHC: IS-RHC) approach to solve such I-space DP problems.
The online stochastic optimization problems that result from
the receding horizon approach are solved using a simulation
based gradient ascent technique. The IS-RHC technique is
tested on a simple scheduling problem where the sensor has
a choice between measurements of N dynamical systems.

In recent years, the optimal sensor scheduling problem
has garnered much interest in the Control and Robotics
community and is variously known as Information-theoretic
Control/ Active Sensing and Dual Control [2], [3]. Discrete
dynamic scenarios such as target tracking [3] have been
considered, but relatively very little has been done on the
optimal sensing of nonlinear dynamical phenomenon. In the
linear dynamical scenario, the optimal scheduling problem
results in a deterministic optimal control problem which
can be solved online using Model Predictive Control [4].
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In the nonlinear case, the problem is stochastic and thus,
is significantly harder to solve because of the associated
computationally intractable stochastic DP problem. In this
paper, we suggest a receding horizon control approach to
the solution of such stochastic sequential decision making
problems, in particular, I-space sequential decision making
problems, that bypasses the need to solve the stochastic DP
problem.

It is very well known that stochastic control problems with
sensing uncertainty, of which sensor scheduling problems
are a special case, can be posed as a Markov Decision
Problem (MDP) on the Information state (I-state), which is
usually the conditional filtered pdf of the state of the system
[5]–[7]. Unfortunately, it is also equally well known that such
problems are notoriously difficult to solve owing to the twin
curses of dimensionality and history, so much so that such
problems have only been solved for small to moderate sized
discrete state space problems (i.e., wherein the underlying
state space of the problem is discrete). Initially, exact solution
of the POMDPs were sought [7] utilizing the convexity of
the cost-to-go function in terms of the I-state. However,
these techniques do not scale well. Thus, focus shifted to
solving such I-space problems using randomized point based
value iteration in which a set of random I-states are sampled
in the I-space and an approximate MDP defined on these
randomly sampled states is then exactly solved using standard
DP techniques such as value/ policy iteration [8]–[10].
These methods have resulted in the solution of much higher
dimensional problems when compared to the ones that can be
solved using exact techniques, however, these methods still
do not scale to continuous state and control space problems.

Model Predictive or Receding Horizon Control (MPC/
RHC) has been one of the most successful applications of
control theoretic techniques in the industry [4]. The MPC
techniques solve a sequence of finite horizon open loop
control problems in a receding- horizon fashion instead of
solving the infinite dimensional DP equation offline. We
propose a similar approach to solve I-space sequential decision
making problems, wherein a sequence of open loop stochastic
optimization problems are solved online in a receding horizon
fashion. However, in the stochastic case, the answers of
the RHC and the DP techniques do not coincide because
in the DP formulation, the optimization is over feedback
policies and not open loop control sequences. However, such
DP problems, in particular, I-space problems, are virtually
computationally intractable in continuous state spaces and
thus, the IS-RHC technique provides a computationally
attractive solution to the I-space problems. We note here that
Monte Carlo based methods for solving MDPs [11], [12] are
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another computationally attractive alternative to solving such
high dimensional problems, however, a detailed comparison
of this technique with the MC techniques is beyond the scope
of this paper, and is left to future work. At the same time, the
empirical results reported in this paper show that the IS-RHC
technique does lead to better payoffs in terms of information
gains when compared to a shortsighted policy.

The original contributions of this paper are as follows:
1) we propose an online receding horizon approach to the
solution of the POMDP problem that results from the sensor
scheduling problem, and 2) we propose a simulation based
gradient ascent approach to the solution of the stochastic
optimization problems resulting from the receding horizon
approach at every time step. Our technique is valid for any
nonlinear autonomous system with a discrete control space.

The rest of the paper is organized as follows. In Section II,
we formulate the sensor scheduling problem. In Section III,
we present the IS-RHC technique. In Section IV, we present
the convergence analysis of the technique and in Section V,
we present a simple numerical example as application of the
IS-RHC technique.

II. MOTIVATION AND PROBLEM FORMULATION

In this section, we introduce the sensor scheduling prob-
lem that we wish to solve in this paper. Consider a dy-
namical system with state denoted by X where X =
[X(1)

, X
(2)

, ...X
(N)]T and X

(i) is a vector that represents the
state of a dynamical subsystem whose dynamics may (or may
not) be coupled with the dynamics of the other dynamical
subsystems. In the case of the SSA problem, the state of
satellite i is denoted by X

(i). Let the dynamics of the entire
system (the entire collection of subsystems) be represented by
the following nonlinear difference equation:

Xk = F (Xk−1) +G(Xk−1)Wk−1, (1)

where F (.) and G(.) are nonlinear functions, and {Wk}
is an uncorrelated white noise sequence. If the sub dynamical
systems were decoupled the above equation would decompose
into N independent difference equations, one for each of the
sub-states X

(i). The measurement equation for the state of
the system is denoted by the following (possibly) nonlinear
equation:

zk = Huk(Xk) + Vk, (2)

where {Vk} is a zero mean uncorrelated white noise
sequence, and Huk(.) is a nonlinear measurement function
which is determined by uk. uk is a control variable that
can take values from 1 to N ; uk = i denotes that we
make a measurement of sub-state X

(i) at time k. Although
this description implies that we can only measure one
sub-component of X at any time step, we might have
the choice of making P > 1 measurements as well. For
notational simplicity we shall concentrate only on P = 1

in the following discussion. The generalization to P > 1 is
quite straightforward.

Let χk denote the pdf of the state X at time k. We shall
call χk the information state of the system since it encodes
our knowledge (or lack thereof) about the system state X .
Given the information state (I-state) at time k − 1, χk−1, the
I-state at time k, χk, will depend on the particular component
that is chosen for measurement at time k and hence on the
control variable uk. It is also clear that χk is dependent on
the noisy observation at time k, zk. However, zk is a random
variable, and thus χk is also random given χk−1 and the
control uk. Given χk−1, the control uk−1 and the current
observation zk, the current I-state χk is obtained via the
Bayes filtering equation (Ch. 5, pp. 252, [5]). In fact, the
evolution of the I-state is governed by a Markov chain (MC)
whose transition density function is denoted by p(χ�

/χ, u)
[5], [6].

Optimal Sensor Scheduling Problem: Our objective in this
work is to maximize the total information about the dynamical
system over the infinite horizon. To this end, let us define the
information gain metric ∆I(χ, u) denoting the expected infor-
mation gain in choosing control u at I-state χ. An excellent
discussion of metrics for sensor tasking problems can be found
in [13]. Let 0 < β < 1 denote a discount factor that quantifies
the fact that the information gains in the immediate future
are more important to us than the information gains further
out in the future. We wish to solve the following discounted
sequential decision making problem over all possible feedback
policies u(.):

V
∗(χ) = max

u(.)
V (χ, u(.)),where (3)

V (χ, u(.)) ≡ E[
∞�

t=1

∆I(χt, u(χt))β
t|χ0 = χ], (4)

for all possible information states χ. Since the I-state χ is
governed by a controlled Markov chain, the answer to the
above problem is provided by solving the following Dynamic
Programming problem:

V
∗(χ) = max

u
[∆I(χ, u) + β

�
p(χ�|χ, u)V ∗(χ�)dχ�]. (5)

Clearly the above DP problem resides in a continuous and
very high dimensional state space thereby making the problem
computationally intractable.

III. INFORMATION SPACE RECEDING HORIZON CONTROL
(IS-RHC)

In this section, we shall propose a simulation based Reced-
ing Horizon Control approach (IS-RHC) to solve the I-space
MDP problem that was posed in the previous section.

A. Stochastic Relaxation of Optimization Problem

Consider again the statement of the I-space MDP given in
Eq. 3. Given that the expected information gain is uniformly
bounded above, i.e., |∆I(χ, u)| < M < ∞ for all (χ, u) and
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given the discount factor β < 1, and given any arbitrarily

small error tolerance � > 0, there always exists a finite time T
such that the finite horizon T-step discounted information gain

JT (χ, u0, u1..., uT ) for any infinite horizon control sequence

{ut}∞t=1 is arbitrarily close to the infinite horizon discounted

cost-to-go for the same control sequence. Thus, in the fol-

lowing we shall concentrate on solving the discounted finite

horizon I-space MDP assuming that a finite horizon T and

discount factor β is given such that the above approximation

holds thereby leaving us with a finite dimensional optimiza-

tion problem as opposed to the infinite dimensional problem

resulting from the original infinite horizon case. Define the T-

step information gain in following the T-step control sequence

U = {u1, · · · , uT } from I-state χ as follows:

J(χ, u1, · · · , ut) = Eχ[
T�

t=1

∆I(χt, ut)β
t|χ0 = χ], (6)

where the notation Eχ[.] denotes that the expectation is over

the sample paths {χ0 = χ,χ1, · · · ,χT } that are particular

T−step realizations of the I-space process. We have dropped

the subscript T for notational convenience. The above equation

is different from Eq. 4 because the expectation above is with

respect to an open loop policy while the one in Eq. 4 is with

respect to a feedback policy. Further, we define the optimal

T-step information gain as follows:

J∗(χ) = max
u1···uT

J(χ, u1, · · ·uT ).

Define a randomized policy Π = {π1, · · ·πT } where πt is

a probability vector such that πt,j = Pr(ut = j) where πt,j

denotes the jth component of πt. Thus, in the randomized

policy, we do not take a particular control action at time t,
instead we take the control action ut = j, j = 1 · · ·N, with a

probability πt,j and
�

j πt,j = 1 for all t. Further, define the

T-step information gain in following stochastic policy Π from

I-state χ as follows:

Js(χ,Π) = Eχ,u[
T�

t=1

∆I(χt, ut)β
t|χ0 = χ],

where the notation Eχ,u[.] denotes the fact that the expectation

in the above equation is now with respect to both the sample

paths {χ1, · · ·χT } and control sequences {u1, · · ·uT }. Then,

it can be seen that the following relationship holds:

Js(χ,Π) =
�

u1,···uT

J(χ, u1, · · ·uT )π1,u1 ..πT,uT , (7)

the summation above is a T-dimensional sum where each ut

can take one of N values. In the following, for notational

convenience, we shall abuse notation and denote the expected

information gain due to a stochastic policy Js(.) by J(.) (the

symbol for information gain due to a deterministic policy). We

wish to solve the optimization problem:

J∗(χ) = max
Π

J(χ,Π), (8)

given some I-state χ.

B. Simulation based Stochastic Gradient Method

Let us write πt,N = 1 − πt,1 − ... − πt,N−1. Then, Eq. 7

reduces to the following equation:

J(χ,Π) =
�

u1...uT

[
N�

j=1

J(χ, u1, ..., ut = j, .., uT )πt,j ]

π1,u1 ...πT,uT ,

=
�

u1...uT

π1,u1 ...πT,uT [
N−1�

j=1

J(χ, u1, ..., ut = j, .., uT )πt,j

+J(χ, u1, ..., ut = N, ..., uT )(1− πt,1 − ...− πt,N−1)]. (9)

Note that J(χ,Π) is a multi-linear function of the probabilities

πt,j . Then, from Eq. 9, it follows that:

∂J(χ,Π)

∂πt,j
=

�

u1..uT

π1,u1 ..πT,uT

{J(χ, u1, .., ut = j, .., uT )− J(χ, u1, .., ut = N, .., uT )}. (10)

Consider the term
�

u1..uT
π1,u1 ..πT,uT J(χ, u1, .., ut = j, .., uT ).

This is nothing but the expected T-step information gain in

following stochastic policy Π whenever ut = j. Define

J(t,j)(χ,Π) =
�

u1..uT

π1,u1 ..πT,uT J(χ, u1, .., ut = j, .., uT ), (11)

where subscript (t, j) denotes the gradient of J(χ,Π) with

respect to πt,j . Then, using the above definition and Eq. 10,

it follows that

∂J(χ,Π)

∂πt,j
= J(t,j)(χ,Π)− J(t,N)(χ,Π), (12)

for all t and all j. Thus, by simulating sample I-space trajecto-

ries under the stochastic policy Π, we can estimate the gradient

of the T-step information gain function J(χ,Π) with respect to

each of the control probabilities πt,j . Then, the policy Π can

be improved by ascending along the gradient
∂J(χ,Π)

∂Π . Note

that the gradient
∂J(χ,Π)

∂Π is a T × N matrix whose (t, j)

element is
∂J(χ,Π)
∂πt,j

. Mathematically, this means we adjust the

stochastic policy at iteration n (not to be confused with time

t) as follows:

Πn+1 = PP {Πn + �n
∂J(χ,Π)

∂Π
|Π=Πn}, (13)

where �n is a small step size and PP (.) denotes a projection

onto the space of stochastic policies P . The projection is

necessary since the new policy update need not satisfy the

constraints required to be satisfied by a stochastic policy.

This projection results in a quadratic programming problem

whenever the constraints are violated. However, estimating
∂J(χ,Π)

∂Π exactly is intractable owing to the large number of

simulations required to do the estimation. Instead, we can

form a noisy estimate of
∂J(χ,Π)

∂Π from a single sample path

(simulation) of the I-space process as follows. Recall Eq. 12

and suppose that ω is a sample realization of the I-space

process, where {χ1(ω), u1(ω), · · ·χT (ω), uT (ω)} denotes the

sample I-space/ control space path, with associated informa-

tion gain J(ω). Then, the information gradient equation 12

can be approximated by using the noisy information gradient
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estimate:
�∂J(χ,Π)

∂πt,j

=
J(ω)

πt,j

if ut(ω) = j,

=
−J(ω)

πt,N

if ut(ω) = N,

= 0, o.w.. (14)

Thus, using the noisy information gradient from the Eq. 14,
the policy update equation may be written as follows:

Πn+1 = PP {Πn + �n
�∂J(χ,Π)

∂Π
|Π=Πn}, (15)

where �∂J(χ,Π)
∂Π is a T × N matrix whose (t, j) element is

�∂J(χ,Π)
∂πt,j

. Using the noisy policy update Eq. 15 above, we
improve the policy by ascending the gradient and in the limit,
we would hope to reach an optimum point for the information
gain function J(χ,Π). A convergence analysis for the above
procedure is provided in Section IV. A remark regarding the
noisy information gradient equation 14 is in order here.

Remark 1. Note the division by πt,j or πt,N in Eq. 14.

If πt,j = 0, then the aforementioned division results in the

indeterminate form 0/0. Physically, if πt,j = 0 for some t, j,

then the control ut = j will never be taken under policy

Π. Thus, we can never form an estimate of Jt,j(χ,Π), the

information gain whenever ut = j, and therefore can never

form an estimate of the gradient of the information gain with

respect to πt,j . Hence, Eq. 14 is only used when πt,j �= 0.

In the case when πt,j = 0, we can circumvent the problem as

follows. Before any I-space sample path simulation, we choose

one of the time steps t for which πt,j = 0 for some j with

some positive probability δ, i.e., we follow πt in choosing ut

with probability (1−δ) else we do the following: we randomly

choose one of the j such that πt,j = 0 and apply this control

action at time t. For all other τ we follow πτ in choosing

control actions uτ . In essence, using the above procedure,

we sporadically explore actions that would otherwise never

be taken under Π with a small positive probability while

keeping the rest of the policy the same. This allows us to

form an unbiased estimate of the information gradient with

respect to element (t, j) for which πt,j = 0. This exploratory

procedure is analogous to the exploration steps that are used

during the policy evaluation step in Actor-Critic algorithms for

Reinforcement learning, as well as the exploratory off-policy

steps that are used in Q-learning [14], [15] .

C. IS-RHC Algorithm

Suppose at time t = 0 the I-state of the system is χ0. Also
suppose that we are given some initial guess for the optimal
T-step stochastic policy, say Π0. Then using the simulation
based noisy gradient estimate from Eq. 14 and the policy
improvement step from Eq. 15, we can ascend the gradient
of the function J(χ,Π) and find an optimum w.r.t Π. This
gives us a T-step policy Π∗

0 = {π∗
1 ...π

∗
T
}. As in the standard

Receding Horizon control approach, we apply the control u1

according to π∗
1 . Next we observe the noisy measurement at

time 1, z1, and update our I-state according to the Bayes
filteringing equation to get the I-state at time 1, χ1. Assuming
that the underlying system is autonomous (note that Eq. 1 is
time independent and hence, autonomous), then we can reset
time to 0, make χ1 our new initial I-state χ0 and repeat the
procedure outlined above. In this fashion, at every time step,
given the current I-state, the T-step stochastic optimization can
be done online and applied in a receding horizon fashion.
Mathematically, the RHC-based feedback control for I-state
χ can be written as:

uRHC(χ) = et
1 argmax

Π
J(χ,Π), (16)

where e1 is the first unit vector in RT (e1 isolates the control
at the first time instant of the T-step open loop control policy).
The above recursive procedure is summarized in the pseudo-
code IS-RHC.

Algorithm 1 Algorithm IS-RHC
• Given initial information state χ0, lookahead horizon T ,

initial policy Π1 and error tolerance δ

1) n = 1, define ||Π1 −Π0|| = δ + 1
2) WHILE ||Πn −Πn−1|| > δ

DO
a) Generate sample I-space path {χt(ω)}Tt=1 start-

ing with initial I-state χ0.
b) Use Eq. 14 to form the noisy estimate of the

information gradient using the sample path.
c) Use Eq. 15 to update the policy.

3) Output converged T-step policy Π∗ = [π∗
1 ..π

∗
T
] and

choose control u1 according to π∗
1 .

4) Observe noisy measurement z1 and update using the
Bayes filter equation to obtain the new I-state χ1.

5) Set χ0 = χ1 and go to Step 1.
• End

Remark 2. The feedback policy that results from the IS-

RHC (ref. Eq. 16) is different from that which would result

from solving the DP equation (ref. Eq. 4). In the DP case

the expectation is with respect to the sample paths that are

generated as a result of a feedback policy u(.) while in the

case of IS-RHC the expectation is with respect to the sample

paths generated by an open loop (not feedback) sequence of

control actions {u1, · · ·uT }.

D. Convergence Analysis

In the following we drop all reference to the initial I-state χ
in the optimization problem J(χ,Π) and refer to the function
as only J(Π). The gradient of the function J(.) with respect to
Π is denoted by G(Π). Let {qi(Π) ≤ 0} denote the constraints
on the problem for some i = 1, ...K. The constraints are all
linear and are of the form 0 ≤ πt,j ≤ 1 for all t ∈ {1...T}, j ∈
{1...N}, and

�
j
πt,j ≤ 1 for all t ∈ {1..T}. However, note

that the information gain function is multilinear and in general,
can have multiple local minima. Let the compact set defined
by the constraints above, the space of stochastic policies, be
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denoted by P . Let us denote the set of stationary points of

J(.) by S where

S = {Π : G(Π)−
�

i

λiqi(Π) = 0, λi ≥ 0}, (17)

where λi = 0 whenever qi(Π) < 0 and λi ≥ 0 otherwise.

Note that the set S is the collection of all the Kuhn-Tucker

(K-T) points of the function J(Π). The set is non-empty since

J(Π) is continuous and the set P of stochastic policies is

compact, and therefore the function will attain its extrema in

P . Moreover, the set Si can be decomposed into disjoint, con-

nected and compact subsets S such that J(Π) = constant = Ci

over each Si (see [16], p. 126), since J(.) and qi(.) are twice

continuously differentiable. Let the step size parameters satisfy

the following conditions which is a standard assumption for

most stochastic approximation algorithms [16]:

�

n

�n = ∞,
�

n

�2n < ∞.

Then the following result holds:

Proposition 1. The sequence of policy updates Πn → Si for
some unique i.

Proof: Write the constrained noisy policy update equation

15 as

Πn+1 = Πn + �n(Ĝ(Πn) + zn), (18)

zn ∈ −C(Πn), where C(Π) denotes the infinite convex cone

generated by the outward normals of the active constraints at

point Π. A convex cone generated by vectors v1 and v2 is the

set {v : v = α1v1 + α2v} where α1,2 ≥ 0. Note that zn = 0
if Πn is in the interior of the constraint set P . Further, the

above expression may be rewritten as follows:

Yn = Ĝ(Πn) = G(Πn) + Ĝ(Πn)− E[Ĝ(Πn)|Πn]� �� �
ψn

+E[Ĝ(Πn)|Πn]− G(Πn)� �� �
γn

. (19)

It can easily be seen that Ĝ(.) is an unbiased estimator of G(.)
and hence, it follows that γn = 0 above. Further, due to the

same reason, E[ψn|Πn] = 0 and thus, {ψn} is a Martingale

difference sequence. These, along with the step size condition

above, imply that all the assumptions of Theorem 2.1 (p. 127)

of [16] are satisfied and hence, Πn → Si for some unique i.
Q.E.D.

IV. ILLUSTRATIVE EXAMPLES

In this section, we shall present an application of the

IS-RHC technique to an illustrative example containing

N decoupled 2-dimensional oscillators. This abstract class

of problems involving an array of simple oscillators was

chosen because it is relatively simple, yet resembles the

motivating satellite tracking problem in that the dynamical

subsystems exhibit periodic behavior. The decoupled nature

of the oscillators only affects the filtering algorithm used to

generate the sample I-space paths, otherwise, the method is

Greedy No Smear Half Smear Full Smear
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Fig. 1. Comparison of the RHC and shortsighted policies for a sample initial

I-state for the case of N = 4 Van Der Pol oscillators. The bars represent the

mean final information utility; the box plots show the median (red line), first

(upper blue line) and third quartiles (lower blue line), and range of the results.

There are 3 versions of the RHC policy. In the “no smear” approach, we

initialize the solution of any N-step horizon with the solution of the previous

N step horizon, over the first N-1 steps of the current horizon while smearing

the last step, i.e, setting all probabilities at that step equal. In the half smear

approach, the solution is initialized by randomizing a part of solution over

the previous time horizon, while in the full smear approach, the solution of

any time horizon is fully randomized, i.e., all actions at every time are set to

be equally likely thereby erasing all knowledge from the optimization over

the previous time horizon.

independent of such coupling.

The information gain metric that is used is the following:

∆I(χ, u) = E[det(P−1
χ,u)− det(P−1

χ )],

where det(A) represents the determinant of the matrix A, Pχ

is the covariance of the I-state χ and Pχ,u is the covariance

of the I-state resulting from taking control u at I-state χ.

The experimental results shown below are for a set of 4 2-

dimensional Van der Pol oscillators. We assume that an EKF

can be used to keep track of the I-states and hence, the I-

state can be approximated as a Gaussian distribution. The

state space of the I-space MDP problem in this case is then

4 x (2 + 3) = 20 dimensional (2 dimensional mean and 3

dimensional covariance times the number of oscillators). We

test our technique against a short sighted policy that only

looks one step ahead while our RHC technique looks five

steps ahead. The results of our experiments are summarized

in Figures 1 and 2. In Figure 1, we see that the average

gain of the I-RHC technique over that of a shortsighted

policy is approximately 500-600%. The information gain is

calculated over a horizon of 20 times steps for 300 different

initial conditions. In Figure 2, we show a particular tasking

example wherein the RHC outperforms the shortsighted policy

by a very large margin (approximately 25 times better). This

simple example provides empirical evidence that the IS-RHC

technique does indeed result in control policies that maximize

the information gained about the system over the long run
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Fig. 2. Comparison of the RHC and shortsighted policies for a sample initial I-state for the case of N = 4 oscillators. The shortsighted oscillator repeatedly
measures the third oscillator which has high process noise and a low sensor noise, thereby giving the highest short term information gain. The RHC techniques,
on the other hand, let the uncertainty of the third oscillator grow, while measuring other oscillators, knowing that the third oscillator can be measured later
and its uncertainty reduced. This long sighted strategy results in a much higher information gain for the RHC techniques when compared to the shortsighted
strategy.

when compared to shortsighted policies. Further, to the best
of our knowledge, even for the simple examples considered in
this paper, the dynamic programming problems are very high
dimensional and the I-space RHC technique seems to be the
only one, in addition to Monte Carlo based methods [11], [12],
that is capable of handling such high dimensional problems.
However, the comparison with these MC based methods is
beyond the scope of this paper and will be done in a follow
up paper.

V. CONCLUSION

In this paper, we have proposed a receding horizon control
based approach to solve I-space MDP, termed IS-RHC, in-
stead of solving the associated computationally intractable DP
equation. We proposed a simulation based stochastic gradient
technique for solving the open loop stochastic optimization
problem that results at every time step due to the IS-RHC
technique. We have tested the IS-RHC on a simple example,
which nevertheless result in large DP problems that are well
beyond the capability of existing techniques, and the results
show that the IS-RHC technique does result in significant
improvement in the information gained regarding the system
when compared to a shortsighted policy. Further research will
focus on testing the IS-RHC on more realistic examples as
well as extending the formulation such that constraints on the
information process and the problem of decentralized control
for multiple sensors can be taken into account.
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Information Space Receding Horizon Control for Multi-Agent Systems

Z. Sunberg, S. Chakravorty, R. Erwin

Abstract— In this paper, we present a receding horizon

solution to the problem of optimal scheduling for multiple

sensors monitoring a group of dynamical targets. The term

’target’ is used here in the classic sense of being the object that

is being sensed or observed by the sensors. This problem is

motivated by the Space Situational Awareness (SSA) problem.

The multi-sensor optimal scheduling problem can be posed

as a multi-agent Partially Observed Markov Decision Process

(POMDP) whose solution is given by an Information Space

(I-space) Dynamic Programming (DP) problem. We present a

simulation based stochastic optimization technique that exploits

the structure inherent in the problem to obtain variance

reduction along with a distributed solution. This stochastic

optimization technique is combined with a receding horizon

approach which obviates the need to solve the computationally

intractable multi-agent I-space DP problem and hence, makes

the technique computationally tractable for such problems. The

technique is tested on a simple numerical example which is

nonetheless computationally intractable for existing solution

techniques.

I. INTRODUCTION

In this paper, we consider the problem of optimal schedul-
ing for multiple sensors such that the information gained
by the sensors is maximized. The class of problems that
is considered is motivated by the so-called Space Situa-
tional Awareness (SSA) problem. It is easily shown that the
scheduling problem, in general, may be posed as a Partially
Observed Markov Decision Problem (POMDP) whose so-
lution is given by an information space (I-space) Dynamic
Programming (DP) problem. In the case of multiple agents,
the resulting problem is a multiple agent I-space DP problem
that is impossible to solve computationally owing to the ex-
ponential complexity of the problem in terms of the number
of agents and the resulting exponential explosion of the state
and control spaces. We propose a generalization of an I-space
receding horizon control (I-space RHC: IS-RHC) approach
that we had proposed to the single sensor problem in previous
work [1], to the case of multiple agents. The solution strategy
is termed the I-space RHC multi-agent technique (I-RHC-
M). The online stochastic optimization problems that result
from the receding horizon approach are solved using a
simulation based gradient ascent technique. The underlying
structure of the problem allows us to drastically reduce
the variance of the gradient estimates while allowing for a
distributed implementation of the gradient ascent technique.
The technique is tested on a simple example to show the

Z. Sunberg is a Graduate Student Researcher in Aerospace Engineering,
Texas A&M University, College Station, TX, sunbergzach@gmail.com

Suman Chakravorty is an Associate Professor of Aerospace Engineering,
Texas A&M University, College Station, schakrav@aero.tamu.edu

R. Erwin is a Principal Research Scientist, Space Vehicles Directortate,
Air Force Research Laboratory, Albuquerque

efficacy of the method. In recent years, the optimal sensing
problem has garnered a lot of interest in the Control and
Robotics community and is variously known as Information-
theoretic Control/ Active Sensing and Dual Control [2]–[12].
Discrete dynamic scenarios such as target tracking [6]–[9],
and linear spatially distributed systems [13], [14] have been
considered, but relatively very little has been done on the
optimal sensing of nonlinear dynamical phenomenon. In the
linear dynamical scenario, the optimal scheduling problem
results in a deterministic optimal control problem which
can be solved using Model Predictive control (see below).
In the nonlinear case, the problem is stochastic and thus,
is significantly harder to solve since we have to solve the
associated stochastic DP problem. In the past decade, there
has also been a significant volume of research on the prob-
lems of co-operative sensing, estimation and control [15],
[16]. These techniques have considered various classes of
multi-agent systems and have proposed distributed estimation
and control schemes for such problems including formation
keeping, flocking and distributed sensing. The multi sensor
scheduling problem we consider in this paper also falls under
the category of multi-agent systems. However, the structure
of the problems that we consider, motivated by the SSA
problem, is unlike any other in the aforementioned literature.
In particular, the problem we consider has a time varying
graph structure that introduces further complexity into the
problem and none of the above techniques are applicable. In
this paper, we suggest a receding horizon control approach
to the solution of such stochastic multi-agent sequential
decision making problems, in particular, I-space sequential
decision making problems for multiple agents, that allows
us to account for all the complexities introduced by the
class of problems representing the SSA problem. Further,
the underlying structure of the problem is exploited to obtain
variance reduction of the gradient estimation that is required
by the technique as well as a distributed implementation of
the technique.

It is very well known that stochastic control problems with
sensing uncertainty, of which sensor scheduling problems are
a special case, can be posed as a Markov Decision Problem
(MDP) on the I-state, which is usually the conditional filtered
probability density function (pdf) of the state of the system
[17]–[19]. Unfortunately, it is also equally well known that
such problems are notoriously difficult to solve owing to the
twin curses of dimensionality and history, so much so that
such problems have only been solved for small to moderate
sized discrete state space problems (i.e., wherein the under-
lying state space of the problem is discrete). Initially, exact
solution of the POMDPs were sought [19], [20] utilizing the



convexity of the cost-to-go function in terms of the I-state.
However, these techniques do not scale well. Thus, focus
shifted to solving such I-space problems using randomized
point based value iteration in which a set of random I-states
are sampled in the I-space and an approximate MDP defined
on these randomly sampled states is then exactly solved using
standard DP techniques such as value/ policy iteration [21]–
[23]. These methods have resulted in the solution of much
higher dimensional problems when compared to the ones
that can be solved using exact techniques, however, these
methods still do not scale to continuous state, observation
and control space problems. The problem we consider in
this paper is a multi-agent POMDP and the state and control
space of the problem explodes exponentially in terms of the
number of agents. Thus, these problems are exponentially
harder to solve computationally when compared to single
agent I-space problems. There has been considerable interest
of late in solving multi-agent MDP problems that are tailored
to exploit the structure that is inherent in such problems
with Value/ Policy Iteration as well as reinforcement learning
based techniques [24]–[28]. However, the class of problems
that we consider in this paper not only do not conform to
the structure required by these techniques, but also have
continuous state and observation spaces to which these
methods do not scale. The I-RHC-M technique sequentially
solves open loop optimization problems given the current I-
state of the system which precludes having to explore the
huge state space of multi-agent MDPs and thereby, keeps
the method computationally tractable.

Model Predictive or Receding Horizon Control (MPC/
RHC) has been applied very successfully in industry [29],
[30]. In the deterministic setting, the MPC technique and
the Dynamic Programming technique essentially give the
same answer. The MPC techniques solve a sequence of finite
horizon open loop control problems in a receding horizon
fashion instead of solving the infinite dimensional DP equa-
tion offline. In this fashion, constraints on the systems can
be taken into account, which is very difficult in DP. This
has led to many successful applications [29], [30]. Recently,
there has been increasing interest in stochastic receding
horizon control (SRHC) approaches [31]–[33] that provide
receding horizon approaches to constrained stochastic control
problems. However, many of these techniques have been
developed for linear systems with analytical models of the
dynamics and constraints. In our case, an analytical model of
the process does not exist, instead we have access to simu-
lations. We propose an SRHC approach to solve multi-agent
I-space sequential decision making problems. A sequence of
open loop stochastic optimization problems are solved online
using a distributed simulation-based optimization technique
in a receding-horizon fashion. It should be noted that in
the stochastic case, the RHC and DP techniques do not
coincide because in the DP formulation, the optimization is
over feedback policies and not open loop control sequences
as in the I-RHC-M technique. However, such DP prob-
lems, in particular, I-space problems, especially multi-agent
problems, are computationally intractable in continuous state

and observation spaces, and thus, the I-RHC-M technique
provides a computationally attractive solution. The empirical
results show that the I-RHC-M technique does lead to better
payoffs in terms of information gains when compared to a
shortsighted strategy.

The rest of the paper is organized as follows: In Section II,
we formulate the class of multi sensor scheduling problems
of interest, primarily motivated by the SSA problem. In Sec-
tion III, we present the I-RHC-M technique for the solution
of this class of problems. In Section IV, we present a simple
numerical example involving multiple sensors measuring a
group of nonlinear simple pendulums, which is nonetheless
intractable for other existing techniques in the literature, as
a proof of concept, of the I-RHC-M technique.

II. MODEL AND PROBLEM FORMULATION

In this section, we model the class of multiple sensor
scheduling problems that we are interested in solving in
this work. This class of problems is motivated by the Space
Situational Awareness problem (SSA) but can be extended
in a straightforward fashion to a broader class of problems.

We are interested in tracking a set of N targets where the
state of the i

th target is governed by the stochastic ODE:

ẋi = fi(xi) + giwi, (1)

where wi is a white process noise term perturbing the
motion of target i. The term ’target’ is used here in the classic
sense of being the object that is being sensed or observed
by the sensors.

We assume that there are M sensors S = {Sj}, typically
M << N , and suppose that every sensor j can make a
measurement of one among a set of targets at any given
point in time denoted by the set T j(t), where

T
j(t) = {k ∈ [1, .., N ]|target k is visible to sensor j}.

We make the following assumption to simplify the pre-
sentation of our technique, however, it can be relaxed in a
relatively straightforward fashion.

A 1. Any target ”‘i”, at any time ”t”, is in the field of view

(FOV) of only one sensor.

Further, let us denote by S(i, t), the unique sensor that
can see target i at time t, i.e, S : TxH → S , is an integer
valued function that maps the product space of the target set
T and the time horizon H = [0, .., H] into a unique positive
integer denoting a particular sensor in the set of sensors S .
We make the following assumption.

A 2. The function S(i, t) is known a priori for a given time

horizon H.

Its obvious that the following relationship holds between
T

j(t) and S(i, t):

T
j(t) = {i ∈ T |S(i, t) = j}. (2)

Thus, knowing S(i, t) allows us to find T
j(t) and vice-versa.

The above assumption allows us to simplify the problem
somewhat by assuring us that the set of control choices



available to the different sensors is deterministic, albeit time
varying. We note that the S(i, t) function can be thought of
as a ”most likely” a priori estimate of the sensors’ control
choices, and discrepancies due to the stochasticity of the
system can be accounted for in the planning phase. For
instance, if there is a target in view of a sensor that is
not predicted by S(i, t) then the sensor will never look at
that target, and if a target that was predicted to be there is
not, then the reward for making a measurement of the non-
existent target would be negative as the uncertainty would
increase, and hence, the control policy would learn to avoid
such a choice.

Suppose now that a sensor j can make a measurement of
precisely one of the targets in its FOV at time t, i.e.,

yi = Hj(xi) + vj ,where i ∈ T
j(t), (3)

and vj is a white measurement noise process corrupting the
measurements of sensor j.

Given the measurements of a target i till time t, we
assume that some suitable Bayes filter is used to estimate
its conditional pdf. Let us denote its pdf / Information state
(I-state) by χi(t). Let u

S(i,t)
t

denote the control action of
sensor S(i, t) at time t, i.e., the target that sensor S(i, t)
chooses to measure from among the targets in its FOV at
time t.

Let the incremental reward/ utility/ information gain of
taking control u

S(i,t)
t

for target i, at time t, be denoted
by ∆I(χi(t), u

S(i,t)
t

). Then, the total reward of using a
sequence of control policies over a time horizon H for target
i, {uS(i,t)

t
(.)}H

t=0, is given by:

V (χi, {u
S(i,t)
t

(.)}H
t=0)

= E[
H�

t=0

∆I(χi(t), u
S(i,t)
t

(χ̄(t)))/χi(0) = χi]. (4)

In the above expression, the expectation is over al in-
formation trajectories that result from the feedback policies
u
S(i,t)
t

(.). In general, the feedback control function for any
sensor S(i, t) that sees target i at time t, is a function of the
composite I-state of all the targets χ̄ = {χ1, · · ·χN}, not
just χi. We assume that the total reward for the system is
the sum of the rewards of the individual targets.

The problem can then be posed as one of maximizing
the total reward of the system over all feasible feedback
policies of the individual sensors. Exploring the entire state
and control spaces is essentially impossible in this case
owing to the huge dimensionality of the problem. Further, in
this case, the DP solution is necessarily time varying which
complicates the solution of the DP problem further.

III. MULTI-AGENT INFORMATION SPACE RECEDING
HORIZON CONTROL(I-RHC-M)

In previous work, we have proposed an I-space receding
horizon control approach that involves solving an open loop
stochastic optimization problem at every time step, for the
case of scheduling the measurements of a single sensor. In
this section, we shall extend this approach to the problem of

multiple sensors in the scenario formulated in the previous
section.

A. The Open Loop optimization Problem

First, we shall look at the open loop optimization problem,
i.e., an optimization problem where the finite horizon reward
function J(χ̄, Ū) is a function of a sequence of a given initial
I-state χ̄ and a sequence of open loop control actions Ū , as
opposed to the feedback control policies considered in the DP
formulation in the previous section (note that we distinguish
the open and closed loop reward functions using J(.) and
V (.) respectively). In particular, we would like to solve the
open loop stochastic optimization problem:

max
{uj

t
}

N�

i=1

J(χi, {u
S(i,t)
t

}), (5)

where the optimization is over all possible control choices
of every sensor-time 2-tuple (j, t). In the above notation
u
S(i,t)
t

denotes the control choices of sensor S(i, t) at time t.
We use this notation because the total reward of the system
can be defined in terms of the individual rewards of the
different targets and it further allows us to extract structure
from the problem. Since sensor S(i, t) may be seeing other
targets j ∈ T

S(i,t)(t), we note that S(i, t) = S(j, t) for all
j ∈ T

S(i,t)(t). Thus, the choices u
S(i,t)
t

∈ T
(S(i,t)(t), i.e.,

the sensor S(i, t) can choose to measure any of the targets in
T

S(i,t)(t) at time t. Hence, the open loop optimization is to
maximize the reward of the system given the control choices
available to every sensor-time 2-tuple (j, t),and a given initial
I-state χ̄ over the finite time horizon H. Note that this is an
open loop optimization problem and does not consider the
control to be a function of the particular information states
that are encountered along an information trajectory.

Next, we consider a randomization of the control choices
available to any given sensor: instead of the control uj

t
being

deterministic, i.e, the sensor chooses to measure exactly one
of the targets in its FOV at time t, we assume that the
sensor chooses to measure one of the targets in its FOV
with a certain probability. Let us denote the probabilities
representing the randomized policies for every sensor time
tuple (j, t) by {π

j

t,k
} where:

π
j

t,k
= Prob.(uj

t
= k), (6)

i.e., the probability that the j
th sensor at time t chooses

to measure the k
th target in its FOV. Compactly, we shall

denote the randomized policy for the sensor time 2-tuple
(j, t) by Πj

t
. Also, we shall denote the randomized policies

of all the sensor-time tuples by Π̄ = {Πj

t
}. Given the

definitions above, the total reward for target i in following
the composite randomized sensor policy Π̄ = {Πj

t
} is given

by the following:

J(χi, Π̄) = J(χi, {Π
j

t
}) =

�

u
S(i,1)
1 ..u

S(i,H)
H

J(χi, u
S(i,1)
1 , · · · , u

S(i,h)
H

)πS(i,1)

1,uS(i,1)
1

...π
S(i,H)

H,u
S(i,H)
H

. (7)



The average above is over all possible choices of uS(i,t)
t

for
all possible t ∈ H. Further, the total reward in following the
randomized policy {Πj

t
} is then given by:

J(χ̄, Π̄) =
N�

i=1

J(χi, Π̄). (8)

B. Simulation based Information Gradient Technique

In the following, we shall use gradient ascent to find a
maximum for the total reward of the system. In order to do
this, we first need to evaluate the gradient ∂J

∂Πj

t

for every
sensor-time 2-tuple (j, t). In particular, we can show that the
gradient ∂J

∂π
j

t,k

is given by the following:

∂J

∂πj

t,k

=
�

l∈T j(t)

�

u
S(l,1)
1 ...u

S(l,H)
H

J(χl, u
S(l,1)
1 , .., uS(l,t)

t
= j, .., uS(l,H)

H
)

πS(l,1)

1,uS(i,1)
1

....πS(l,H)

H,u
S(l,H)
H

. (9)

To see why, note that Πj

t
explicitly appears only in the

reward expressions of the targets that are in the FOV of
sensor j at time t, namely T j(t). Hence, the gradient only
involves contributions from these targets. Further, note that
for any l ∈ T j(t) , by definition S(l, t) = j. Hence, the
above expression implies that the gradient of the total reward
with respect to the probability that the sensor-time pair (j, t)
measures the kth target in its field of view is given by the
average cost of the information-trajectories of the targets
in T j(t), given that sensor j at time t actually chooses to
measure the kth object in its FOV.

The gradient ascent algorithm is the following:

Πj

t
= PP

�
Πj

t
+ γ

∂J

∂Πj

t

�
, (10)

where γ is a small step size parameter, and PP [.] denotes
the projection of a vector onto the space of probability
vectors P (needed because the policy updated policy of
sensor-time pair (j, t) is not gauranteed to fall in P ).

Of course, implementing the deterministic gradient ascent
algorithm above entails averaging over multiple realizations
of the information trajectories and sensor control sequences.
Instead, we use a stochastic gradient ascent technique utiliz-
ing only one sample realization of the information trajectory.
We replace ∂J

∂Πj

t

in Eq. 10 with �∂J
∂Πj

t

where

�∂J
∂πj

t,k

= J (j,t))(ω) ifuj

t
= k

= 0, o.w. (11)

where ω represents a sample realization of the information
process, and J (j,t)(ω) represents the information gain of
the targets in T j(t) for that particular realization of the
information process.

Remark 1. Distributed Implementation: Suppose that we

have a CPU for every sensor-time tuple (j, t). This processor

evaluates the gradient
∂J

∂Πj

t

, and, because
∂J

∂Πj

t

depends only

on the I-trajectories of the targets in T j(t), the CPU need

only simulate trajectories of those targets. Thus the CPU

need only know a subset of the policies for the network of

sensors - those for sensors that can see the targets in T j(t),
that is ΠS(l,τ)

τ , l ∈ T j(t) and τ ∈ H. This allows for a sparse

connection graph among the processors thereby facilitating a

distributed implementation of the gradient ascent algorithm.

C. Convergence

The stochastic information gradient algorithm is guaran-
teed to converge to one of the set of Kuhn-Tucker points of
the function J(χ̄, {Πj

t
}) with the constraints being that the

randomized policy for every sensor-time pair (j, t), Πj

t
needs

to be a probability vector.
In the following we drop all reference to the initial I-state

χ̄ in the optimization problem for J(χ̄, Π̄) and refer to the
function as only J(Π̄). The gradient of the function J(.)
with respect to Π̄ is denoted by G(Π̄). Let {qi(Π̄) ≤ 0}
denote the inequality constraints on the problem for some
i = 1, ...K and hi(Π̄) = 0 denote the equality constraints
for some i = 1, · · ·L. Let the compact set defined by the
constraints above, the space of stochastic policies, be denoted
by P . Let us denote the set of stationary points of J(.) by
S where

S = {Π̄ : G(Π̄)

−

�

i

λi∇qi(Π̄)−
�

j

µj∇hi(Π̄) = 0, λi ≥ 0}, (12)

where λi = 0 whenever qi(Π̄) < 0 and λi ≥ 0 otherwise.
Let the step size parameters satisfy the following conditions:

�

n

�n = ∞,
�

n

�2
n
< ∞.

Then the following result holds:

Proposition 1. The sequence of policy updates Π̄n → Si,

for some unique i almost surely, i.e., the stochastic gradient

algorithm (Eq. 10, 11) converges to a set of stationary (K-T)

points such that the value of J(.) on each such set Si is

constant.

D. Receding Horizon Control

We have presented a simulation-based stochastic gradient
technique to get a maximum of the total reward J(χ̄, Π̄) with
respect to the sensor-time randomized policies Π̄ = {Πj

t
}

given some initial information state χ̄. In the following, we
recursively solve such open loop optimization problems at
every time step given the current information state to obtain
a receding horizon solution to the sensor scheduling problem
for multiple sensors.

Suppose at the initial time the information state of the
system is χ̄0. Then, given this initial information state, we
use the stochastic information gradient technique presented
previously to obtain a maximum for the total information
reward of the system over the randomized policies of every
sensor-time pair (j, t) over some given horizon H. Then, we



implement the first time step of the policies for every sensor
j, and take measurements of the targets as specified by the
control policies at the first time step. Then, we use suitable
filtering techniques to update the information state of the
system to obtain a new information state χ̄�. Then, we set
χ̄0 = χ̄�, and repeat the information gradient technique to
obtain a minimum of the total reward over the next horizon
H given the new information state χ̄�. The technique can be
summarized in the I-RHC-M algorithm below.

Algorithm 1 Algorithm I-RHC-M
• Given initial information state χ̄0 and lookahead hori-

zon H

1) Use the stochastic information gradient technique
(Eq. 10, 11) to obtain a minimum of the total
reward J(χ̄0, {Π

j
t}) over all sensor-time pairs

(j, t) over the horizon H.
2) Output converged T-step policy Πj∗

t for every
sensor-time pair (j, t)

3) Observe noisy measurement z based on the first
step of policy {Πj∗

t } and update information state
using a suitable filter to obtain the new I-state χ1.

4) Set χ0 = χ1 and go to Step 1.
• End

IV. ILLUSTRATIVE EXAMPLE

In this section, we shall apply the I-RHC-M technique de-
veloped in the previous section to a simple problem involving
multiple simple pendulums that mimics the SSA problem.
Although the problem is relatively simple, nevertheless it
is so high dimensional that no existing technqiue in the
literature can be used to solve it. We consider a set of N
simple (nonlinear) pendulums subject to white process noise.
We have access to M noisy angle sensors with disjoint FOVs.

Note that the above simple problem has the flavor of the
SSA problem, in that each sensor has a bounded FOV, and
can measure a target if and only if its within the FOV.
Further, the pendulum problem is periodic like the SSA
problem.For the numerical examples below, we apply our
I-RHC-M technique to a situation where there are 4 targets
(N = 4) and 3 sensors to measure them (M = 3). The
initial states of the pendulums are chosen randomly and
we assume that the noise statistics are identical for each
of the pendulums an sensors. We assume that the Gaussian
assumption holds in this problem and use extended Kalman
filters to approximate the filtered densities, or I-states of
the pendulums. The information gain metric used in this
work is the difference in the determinants of the information
(inverse of the covariance) matrix of the targets and the
total information gain is the sum of the information gains
of the different targets. The state space of each pendulum
is 2 dimensional. Given that the Gaussian approximation
holds, the I-state of every pendulum can be specified by its
mean and covariance and hence, the I-state of each pendulum
is 6 dimensional. Thus, given 4 pendulums, the joint state
space of the problem is 24 dimensional. None of the existing
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Fig. 1. Performance of the I-RHC-M algorithm in the average case scenario
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Fig. 2. Performance of the I-RHC-M algorithm in the best case scenario

techniques can solve such a high dimensional problem, given
even the extensive computing resources available today (the
highest dimensional DP problem that can be solved is usually
6 to 8 dimensional). Thus, even this simple example, shows
the degree of computational complexity that is inherent in
the problem and to the best of our knowledge, the I-RHC-M
procedure is the only one that is capable of tackling such
problems.

The results of our numerical simulations are shown in
Figs. 1 and 2. For comparison, we chose a “greedy” myopic
policy as it is the only technique, other than the I-RHC-
M technique, that scales to high dimensional problems such
as this. The I-RHC-M technique had a lookahead horizon
of 10 timesteps and the information gains were evaluated
over a total time of 20 timesteps. In Fig. 1, we show the
average gain/ loss of the I-RHC-M method, averaged over
three runs of the I-RHC-M technique, compared to that of
the greedy policy, for twenty different initial conditions, i.e.,
we run the I-RHC-M technique three different times for



each initial condition and compare the average information
gain over these runs to the information gain of the greedy
policy. Note that the I-RHC-M policies will, in general, be
different for different runs due to the stochasticity of the
algorithm. In Fig.2, we compare the information gain of
the best of the three I-RHC-M runs to the information gain
of the greedy policy. Note that there is no guarantee that
the I-RHC-M policy can beat the greedy policy, at least
theoretically. However, as can be seen from the plots, the
I-RHC-M technique does beat the greedy policy most of the
time. The I-RHC-M technique provided an improvement of
approximately 13% over the greedy policy in the averaged
case, and an improvement of 20% in the best of three case.

It should be noted that, if we use a reward function
that is the product of the individual reward functions, the
reward gains over the greedy policy are much larger (on
the order of 10 times better), and this structure is more
consistent with the description of the reward function as the
amount of information gained about the system of targets. In
order to maintain the parallelization-friendly characteristics
of the reward function from Remark 1, the logarithm of
this function must be used as the reward function. We
have not yet obtained results using this reward function,
but our conjecture is that we will be able realize very large
information gains with it.

V. CONCLUSION

In this paper, we have introduced an information space
receding horizon control technique for multi-agent systems,
termed the I-RHC-M technique, with application to the
SSA problem. The method is based on a simulation based
stochastic gradient technique that is used to solve a fi-
nite horizon stochastic optimization problem recursively at
every time step, thereby providing a feedback solution to
the problem. We have shown that the method is highly
parallelizable and naturally inherits a variance reduction
property owing to its structure. We have also shown that
the method is capable of handling very high dimensional
continuous state and observation space problems for multi-
agent systems that no other existing technique can claim to
solve. We have tested our technique on a simple example,
which is nonetheless computationally intractable for other
existing solution techniques, and have shown that the method
achieves significant improvement over a greedy policy (the
only other computationally viable strategy).
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